Hamstring strain injuries: are we heading in the right direction? ================================================================= * Jurdan Mendiguchia * Eduard Alentorn-Geli * Matt Brughelli ## Abstract Acute hamstring injuries are the most prevalent muscle injuries reported in sport. Despite a thorough and concentrated effort to prevent and rehabilitate hamstring injuries, injury occurrence and re-injury rates have not improved over the last three decades. This failure is most likely due to the following: (1) a lack of studies with high level of evidence into the identification and prevention of hamstring injuries and (2) a reductionist approach of the current literature. The objectives of this article are to review and critique the current literature regarding isolated risk factors, and introduce a new concept for a more comprehensive scientific understanding of how multiple risk factors contribute to hamstring strain injury. The authors hope that this new conceptual model can serve as a foundation for future evidence-based research and aid in the development of new prevention methods to decrease the high incidence of this type of injury. ## Introduction Hamstring strains are the most prevalent muscle injuries reported in sport. Epidemiology studies have revealed that hamstring injuries alone account for between 6% and 29% of all injuries reported in Australian Rules football, rugby union, football, basketball, cricket and track sprinters.1,–,7 Frustration with hamstring strains is not only explained by the high prevalence of these injuries, but also by the prolonged duration of symptoms, poor healing responses and a high risk of re-injury rate of 12–31%.2 5 Serious concerns arise by the fact that hamstring injury and re-injury rates have not improved over the last three decades.8,–,13 In a recent epidemiologic study, Ekstrand *et al*10 reported injury rates over seven consecutive seasons from 23 professional European football clubs. The authors found unchanged training and competition hamstring injury rates over the 7-year period. These findings may suggest that traditional hamstring prevention and rehabilitation programmes have not been effective. In 2003, Holm and Bahr14 elegantly highlighted, in an excellent scientific effort, the methodological weaknesses of the literature regarding hamstring injuries and proposed the criteria that should be included for identifying the influence of specific risk factors on hamstring injuries. Essentially, studies were required to be prospective with at least 200 subjects and 20–50 injuries in order to be considered minimum quality. In addition, the authors recommended multivariate statistical analysis in order to study the involvement of different risk factors. Many prospective studies15,–,19 have been carried out after the Holm and Bahr10 article but only the studies conducted by Arnason *et al*,20 Gabbe *et al*21 and Engebretsen *et al*22 met the abovementioned criteria. Gabbe *et al*21 and Arnason *et al*20 reported that previous injury and age were independent risk factors for 222 Australian Football players and 305 soccer players (with a total of 31 injuries) over a full season. The authors found no association with: hip and knee flexibility, squat power, peak oxygen uptake, jump testing, body composition, adverse neural tension and so on. Engebretsen *et al*22 also found that previous injury was a risk factor for hamstring injury after reporting 76 injuries in 508 amateur football players. In two thorough systematic reviews, Foreman *et al*23 and Prior *et al*24 showed conflicting results and lack of consistency among the studies conducted on hamstring injuries. The authors were unable to discover a single independent risk factor for hamstring injury. They finally came to the same conclusion as Barh and Holm14 about the need for prospective studies with larger sample sizes, and including a great number of variables in order to conduct multivariate statistical analysis. Despite considerable scientific efforts, methodological quality of available research has been considered moderate (McMaster tool, mean score of 68.4%).24 The purposes of this article are to review the scientific evidence regarding risk factors for hamstring injuries, to highlight the existing limitations of the current literature and to discuss the adequacy of the current reductionist model for investigating this issue. ## Risk factors for hamstring muscle strains ### Previous injury With the exception of Orchard *et al*,25 the literature has concluded that previous hamstring injury increases the risk of re-injury by two-to-six times.20,–,22 26,–,28 Thus, previous injury is unanimously the greatest risk factor noted. This finding prolongs the debate about whether the causes of injury are intrinsically derived from initial injury or inadequate rehabilitation. In humans, MRI has shown evidence of scar tissue for up to 1 year after an athlete's return to sport.29 The presence of scar tissue can alter muscle transmission pathway,30 decrease tendon/aponeurosis complex compliance, and consequently lead to a modification of deformation patterns in the muscle tissue adjacent to the fibrous scar. In fact, it has been recently demonstrated that previously injured muscles exhibit less tissue motion and significantly greater muscle strains near the proximal myotendinous junction compared to uninjured muscles.31 A more systematic rehabilitation programme based on objective measures and multiple risk factors would help to clarify this eternal dilemma.32 ### Flexibility The literature contains controversial findings regarding the association between hamstring flexibility and the risk of injury. Seven prospective studies15 18 20,–,22 25 28 demonstrated no relationship between flexibility of the knee flexors and hamstring injury. On the other hand, three studies33,–,35 showed an association between flexibility values obtained in preseason training and the injuries suffered during the season, in studies involving professional European football players. However, the evaluation methods used to measure hamstring flexibility have been criticised for their static approach and inability to differentiate from lumbopelvic flexibility,36 which in turn has not been shown to be related to injury rates.18 21 Recently new dynamic test have been used in order to assess hamstring flexibility.33 37 Also, Dadebo *et al*38 observed that standard training protocols significantly reduced the rate of hamstring injuries among 30 professional English football clubs. Conversely, Arnason *et al*39 found no association between isolated hamstring flexibility training and a decrease in hamstring injuries in a much larger sample of Scandinavian football players. Systematic review articles from Thacker *et al*40 and Herbert and Gabriel41 support the findings by Arnason *et al*39 that stretching was not consistently associated with hamstring injuries. An association between reduced hip flexor flexibility and the risk of hamstring injuries has been reported.42 In addition, Chumanov *et al*43 reported that during running, the psoas of the contralateral leg had a greater influence on hamstring length than the hamstring itself. This association should make us question the influence of adjacent joints and the use of certain measurements. Moreover, Riley *et al*44 have recently shown that the psoas peak elongation of the stance leg and the hamstring peak elongation of the swing leg occur at the same time during running. The assessment of analytic flexibility in a complex system should be criticised. In addition, it should be stressed that results from static measures (eg, Thomas test) should not be generalised to dynamic actions (eg, sprints).45 ### Strength One of the proposed risk factors for acute hamstring injury is muscle weakness during concentric and/or eccentric contractions.5 15 16 Muscle weakness has typically been assessed with one of the following methods (1) by comparing the peak torque values of the knee extensors (during concentric contraction) with their antagonistic muscle group, that is, the knee flexors (during concentric or eccentric contraction) and (2) by comparing the peak torque values between contralateral legs during knee flexion. Both methods show conflicting findings in prospective and retrospective studies.15,–,17 25 28 46,–,49 The fact that most studies assess isokinetic strength during single-joint movements may be one of the reasons for the current controversy since the hamstrings' moment arms at the hip are nearly twice the length of those at the knee during the end of swing phase running.50 51 Sugiura *et al*17 recently reported that elite sprinters who sustained acute hamstring injuries had reduced concentric hip extension strength. Therefore, it may be important to assess the concentric strength of the gluteus as they help the hamstring muscles to extend the hip. More research is evidently warranted in this area. Intervention studies aimed at reducing the incidence of hamstring injuries have focused on the use of eccentric training. In the last decade, there has been a major movement towards the use of eccentric training to treat and prevent different types of musculoskeletal disorders.39 52,–,54 However, a recent *Cochrane Systematic Review* conducted by Goldman and Jones55 has concluded that there is insufficient evidence to state that the protocols of eccentric training have the capacity to reduce hamstring injuries. The authors included three randomised controlled studies involving a total of 287 athletes. The study by Askling *et al*54 with a small sample size reported a benefit of eccentric training on hamstring muscle strains. On the other hand, Gabbe *et al*56 and Engebretsen *et al*57 found no reduction of hamstring muscle injuries after an intervention with eccentric exercises involving a greater sample size. Although one may criticise the methods employed in these studies in terms of compliance or number of subjects involved, we believe that one major limitation may be the generalised use of the Nordic hamstring exercise, which works the knee flexors eccentrically but with the hip in a fixed position. During any movement, such as the swing phase of a sprint, the hip is not fixed but instead moves and works in coordination with the rest of the segments of the body. ### Core stability Recently, core stability has been linked with hamstring injuries.43 58,–,61 Unfortunately, there are no prospective studies on the topic, but only one underpowered interventional study where Hoskins and Pollard (W Hoskins and H Pollard, unpublished data), observed a tendency towards reduced back and muscle injuries through manual therapy. There are many hypotheses that associate hamstring injuries with lumbopelvic stability. Sherry and Best investigated the effects of two different rehabilitation programmes and found that a group of athletes who performed a core stability rehabilitation programme suffered significantly fewer hamstring re-injuries in comparison to a group of athletes that performed conventional isolated strength and stretching exercises.61 Furthermore, Chumanov *et al*43 have been able to demonstrate lumbopelvic influence on hamstring muscle length through the use of modelling technique. This idea is also reflected in a recent study by Kuszewski *et al*62 who demonstrated a tendency towards reduced hamstring stiffness following lumbopelvic stability exercises in a comparative study design. The increased stability of the abdominal muscles with concomitant liberation of the hamstrings in maintaining lumbopelvic stability may explain this phenomenon. The influence of core stability on the risk of hamstring injury requires further investigation. ### Fatigue It has been reported that there are more hamstring injuries at the end of each half of a European football game, which may suggest that fatigue acts as a risk factor for these injuries.2 10 Different fatigue protocols attempting to simulate the demands of a European football game have resulted in reductions in strength, rate of force development and muscle activity of hamstring muscles.63,–,66 However, the kinematic findings after these fatiguing protocols have produced contradictory results.67 68 While Pinniger *et al*67 observed a decrease in hip and knee flexion during sprinting (swing leg) after fatigue, Small *et al*68 revealed significant reductions in combined hip flexion and knee extension angles, indicating reduced hamstring length toward the end of each half of a multidirectional soccer-specific fatigue protocol. The different fatigue protocols may have induced different kinematic affects and may explain these contradictory findings. ### Architecture Mechanisms of hamstring injuries have been mainly studied in sprint actions, but Askling *et al*69,–,71 reported a series of elegant and interesting articles where different types of hamstring strains related to specific patterns of injury where studied. They reported that hamstring injuries related to sprint actions affected mainly the proximal part of the biceps femoris, whereas overstretching injuries mainly involved the free proximal portion of the semimembranosus muscle. Askling *et al*69,–,71 proposed anatomical and architectural reasons (fascicle length) to explain these associations. In this way, muscle functional MRI (fmMRI) has been used by our group (J Mendiguchia, unpublished data) to examine the intensity and/or pattern of muscle activation in commonly-used preventive exercises. This method relies on an exercise-induced increase on transverse relaxation times leading to recruitment images that demonstrate spatial patterns and intensity of muscle activation.72,–,76 The results suggest that different prevention exercises affect different patterns of muscle recruitment, and this degree of response differs between proximal and distal regions. These findings together with those of Askling *et al*69,–,71 and Kubota *et al*73 74 suggest that the prescribed intervention will depend on the injured muscle and its specific anatomic location. It is well accepted that the prevalence of biceps femoris injury is much higher than the medial hamstrings.77 Thelen *et al*78 found that the elongation peak of the biceps femoris during sprints occurred in the oscillation phase, and to a greater magnitude, with increased speed compared to the medial hamstrings. The proximal aponeurosis of the biceps femoris is narrower than the distal part, which could explain the finding that fascicle length increases during contraction.79 Thus, the unique architecture (fascicle length, physiological cross-sectional area, aponeurosis size) of the biceps femoris may explain the greater risk of injury compared to other muscles.80 81 Considering a single muscle, it was observed with the use of complex computerised models that the greatest elongation of biceps femoris muscle fibres during an eccentric contraction takes place in the area adjacent to the proximal myotendinous junction.79 This supports the previous results shown with MRI after a hamstring strain injury in athletes.70 82 83 However, as the authors suggest, it would be desirable to confirm the findings considering all the muscles and joints in an integrated model during sprinting.79 ## Discussion The purposes of this article are to review the scientific evidence regarding risk factors for hamstring injuries, to highlight the existing limitations of the current literature and to discuss the adequacy of the current model for investigating this issue. The principal finding of this review was that the scientific literature has two main flaws that may explain the unknown aetiology of these injuries. First, almost no prospective studies meet the sample (200 subjects) and incidence (20–50 injuries) criteria assessing a large number of variables that will enable multivariate statistical analysis.14 Second, and perhaps more important, the limitations inherent to the current reductionist model used to study hamstring injuries. Research has traditionally assumed a reductionistic view84 where a linear and unidirectional causal-effect model was systematically followed in many topics. This reductionist model is clearly influenced by the Western understanding of any phenomenon and conceives any system as the sum of its parts (figure 1). The medical understanding of the human body as an entity assembled from many pieces stems from Aristotle's premises, showing the ancestral origin of this still current reductionist model. These parts are studied analytically in order to define the contribution of each one into the whole. Currently, there is no clear explanation or robust model that consistently demonstrates how all of the risk factors interact because a reductionistic model does not consider the inter-relationships and random mixing of the parts.84 As an example, can impaired flexibility be considered as a risk factor for hamstring injury as suggested by different prospective studies? If we isolate flexibility of the knee flexors in a hamstring injury study, we may skip the influence of core muscles43 and many other parameters like adverse neural tension85 on flexibility itself. ![Figure 1](http://bjsm.bmj.com/https://bjsm.bmj.com/content/bjsports/46/2/81/F1.medium.gif) [Figure 1](http://bjsm.bmj.com/content/46/2/81/F1) Figure 1 Current cause – effect model for hamstring strain injury. This analytical approach, allows correlational and regression analysis. Both may be useful when developing a research question, but the knowledge they provide may be too limited.84 With these caveats in mind, one must try to consider a less reductionistic model in which the whole body is involved, assuming that parts are not homogeneous and that intimate relationships are present in a non-random fashion.84 This new conceptual model would assume an interconnected, multidirectional and synergic interaction between all parts (figure 2). With this model, many assumptions about hamstring injuries may be cleared. For example, Franz *et al*45 have recently shown that an excessive contraction of the hip flexors may cause an anterior pelvic rotation, compensated with a lumbar hyperlordosis, resulting in a lack of hip extension. In fact, pelvic anteversion has been associated with a decrease in the activity of the gluteus muscles.86 It might be speculated that these findings could help to explain the results obtained by Brughelli *et al*,87 where injured subjects showed reduced horizontal but not vertical strength (ie, during running) due to a likely hip extension range-of–motion (ROM) deficit. The take-to-home message of this example is that one should compare mobility with strength variables without the need to isolate them, thus achieving a more global approach and understanding. ![Figure 2](http://bjsm.bmj.com/https://bjsm.bmj.com/content/bjsports/46/2/81/F2.medium.gif) [Figure 2](http://bjsm.bmj.com/content/46/2/81/F2) Figure 2 New conceptual model for hamstring strain injury. New ‘in sim’ methodological approach enables forward dynamic simulations and the possibility to modify different parameters.84 88 This may help to explain how lumbopelvic stability affects hamstring flexibility and strength, and even muscle fibre length, and confirms the suspicions mentioned by different authors.61 62 Thus, research should approach inter-relationships between multiple variables, for example, ‘core’ stability, muscle flexibility, strength and/or muscle architecture should be advocated to be a more complex model in which hamstring injuries are based. This new conceptual model may be applied to give light to the hypothesis that a decreased activation and/or strength of the gluteus muscles may explain an increased activation of the hamstring muscles, leading to an increased risk of injury. This hypothesis has been recently supported by a case report by Wagner *et al*.89 The model may be even used to investigate the optimum percentage of strength for hamstring muscles to maintain pelvic stability90,–,92 and extend the hip and flex the knee at the same time. In another example, McHugh *et al*85 and Méndez-Sánchez *et al*93 recently verified the effect of adverse neural tension on ROM. Neural tension has not been shown to be a risk factor24 but it may indirectly have an affect through decreased ROM. But do we know which effects both have on the capacity to produce strength? This example shows how a variable that is not considered a risk factor, may turn into a risk factor when combined with others, and increase the likelihood of injury. With these examples and the pattern shown in figure 2, we obtain a more realistic picture of what actually occurs during injury, and we move away from the reductionist vision and design that prevails in the current literature. Although beyond the scope of analysis of this manuscript, we have not to forget the role that external factors, behaviour,94 95 environment95 and genetics may play in hamstring injuries. It is likely that an adequate understanding of these factors may lead to improvements in the prevention of hamstring injuries in sport. ### What is already known on this topic * ▶ Hamstring injury and re-injury rates have not improved over the last three decades. * ▶ Current research methods based in unidirectional and analytical approaches neglect the multifactorial condition and complexity of hamstring injuries. ### What this study adds A new conceptual model showing inter-relationship between the different factors involved in hamstring strains can provide a better understanding of this multifactorial injury and therefore improve its prevention and prediction methods. ## Footnotes * Competing interests None. * Provenance and peer review Not commissioned; externally peer reviewed. ## References 1. Garrett WE Jr.. Muscle strain injuries. Am J Sports Med 1996;24:S2–8. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1177/036354659602400102&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=8947416&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=A1996VW31100002&link_type=ISI) 2. Woods C, Hawkins RD, Maltby S, et al; Football Association Medical Research Programme. The Football Association Medical Research Programme: an audit of injuries in professional football – analysis of hamstring injuries. Br J Sports Med 2004;38:36–41. [Abstract/FREE Full Text](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiYmpzcG9ydHMiO3M6NToicmVzaWQiO3M6NzoiMzgvMS8zNiI7czo0OiJhdG9tIjtzOjIyOiIvYmpzcG9ydHMvNDYvMi84MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 3. Orchard J, Seward H. Epidemiology of injuries in the Australian Football League, seasons 1997–2000. Br J Sports Med 2002;36:39–44. [Abstract/FREE Full Text](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiYmpzcG9ydHMiO3M6NToicmVzaWQiO3M6NzoiMzYvMS8zOSI7czo0OiJhdG9tIjtzOjIyOiIvYmpzcG9ydHMvNDYvMi84MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 4. Meeuwisse WH, Sellmer R, Hagel BE. Rates and risks of injury during intercollegiate basketball. Am J Sports Med 2003;31:379–85. [Abstract/FREE Full Text](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToiYW1qc3BvcnRzIjtzOjU6InJlc2lkIjtzOjg6IjMxLzMvMzc5IjtzOjQ6ImF0b20iO3M6MjI6Ii9ianNwb3J0cy80Ni8yLzgxLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 5. Croisier JL. Factors associated with recurrent hamstring injuries. Sports Med 2004;34:681–95. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.2165/00007256-200434100-00005&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=15335244&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000224187300005&link_type=ISI) 6. Brooks JH, Fuller CW, Kemp SP, et al. Epidemiology of injuries in English professional rugby union: part 1 match injuries. Br J Sports Med 2005;39:757–66. [Abstract/FREE Full Text](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiYmpzcG9ydHMiO3M6NToicmVzaWQiO3M6OToiMzkvMTAvNzU3IjtzOjQ6ImF0b20iO3M6MjI6Ii9ianNwb3J0cy80Ni8yLzgxLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 7. Brooks JH, Fuller CW, Kemp SP, et al. Epidemiology of injuries in English professional rugby union: part 2 training injuries. Br J Sports Med 2005;39:767–75. [Abstract/FREE Full Text](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiYmpzcG9ydHMiO3M6NToicmVzaWQiO3M6OToiMzkvMTAvNzY3IjtzOjQ6ImF0b20iO3M6MjI6Ii9ianNwb3J0cy80Ni8yLzgxLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 8. Ekstrand J, Gillquist J. Soccer injuries and their mechanisms: a prospective study. Med Sci Sports Exerc 1983;15:267–70. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1249/00005768-198315030-00014&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=6621313&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=A1983QW40300012&link_type=ISI) 9. Hägglund M, Waldén M, Ekstrand J. UEFA injury study – an injury audit of European Championships 2006 to 2008. Br J Sports Med 2009;43:483–9. [Abstract/FREE Full Text](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiYmpzcG9ydHMiO3M6NToicmVzaWQiO3M6ODoiNDMvNy80ODMiO3M6NDoiYXRvbSI7czoyMjoiL2Jqc3BvcnRzLzQ2LzIvODEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 10. Ekstrand J, Hägglund M, Waldén M. Injury incidence and injury patterns in professional football: the UEFA injury study. Br J Sports Med 2011;45:553–8. [Abstract/FREE Full Text](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiYmpzcG9ydHMiO3M6NToicmVzaWQiO3M6ODoiNDUvNy81NTMiO3M6NDoiYXRvbSI7czoyMjoiL2Jqc3BvcnRzLzQ2LzIvODEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 11. Waldén M, Hägglund M, Ekstrand J. UEFA Champions League study: a prospective study of injuries in professional football during the 2001–2002 season. Br J Sports Med 2005;39:542–6. [Abstract/FREE Full Text](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiYmpzcG9ydHMiO3M6NToicmVzaWQiO3M6ODoiMzkvOC81NDIiO3M6NDoiYXRvbSI7czoyMjoiL2Jqc3BvcnRzLzQ2LzIvODEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 12. Hawkins RD, Fuller CW. A prospective epidemiological study of injuries in four English professional football clubs. Br J Sports Med 1999;33:196–203. [Abstract](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiYmpzcG9ydHMiO3M6NToicmVzaWQiO3M6ODoiMzMvMy8xOTYiO3M6NDoiYXRvbSI7czoyMjoiL2Jqc3BvcnRzLzQ2LzIvODEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 13. Nielsen AB, Yde J. Epidemiology and traumatology of injuries in soccer. Am J Sports Med 1989;17:803–7. [Abstract/FREE Full Text](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToiYW1qc3BvcnRzIjtzOjU6InJlc2lkIjtzOjg6IjE3LzYvODAzIjtzOjQ6ImF0b20iO3M6MjI6Ii9ianNwb3J0cy80Ni8yLzgxLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 14. Bahr R, Holme I. Risk factors for sports injuries – a methodological approach. Br J Sports Med 2003;37:384–92. [Abstract/FREE Full Text](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiYmpzcG9ydHMiO3M6NToicmVzaWQiO3M6ODoiMzcvNS8zODQiO3M6NDoiYXRvbSI7czoyMjoiL2Jqc3BvcnRzLzQ2LzIvODEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 15. Yeung SS, Suen AM, Yeung EW. A prospective cohort study of hamstring injuries in competitive sprinters: preseason muscle imbalance as a possible risk factor. Br J Sports Med 2009;43:589–94. [Abstract/FREE Full Text](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiYmpzcG9ydHMiO3M6NToicmVzaWQiO3M6ODoiNDMvOC81ODkiO3M6NDoiYXRvbSI7czoyMjoiL2Jqc3BvcnRzLzQ2LzIvODEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 16. Croisier JL, Ganteaume S, Binet J, et al. Strength imbalances and prevention of hamstring injury in professional soccer players: a prospective study. Am J Sports Med 2008;36:1469–75. [Abstract/FREE Full Text](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToiYW1qc3BvcnRzIjtzOjU6InJlc2lkIjtzOjk6IjM2LzgvMTQ2OSI7czo0OiJhdG9tIjtzOjIyOiIvYmpzcG9ydHMvNDYvMi84MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 17. Sugiura Y, Saito T, Sakuraba K, et al. Strength deficits identified with concentric action of the hip extensors and eccentric action of the hamstrings predispose to hamstring injury in elite sprinters. J Orthop Sports Phys Ther 2008;38:457–64. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.2519/jospt.2008.2575&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=18678956&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000258474500003&link_type=ISI) 18. Gabbe BJ, Finch CF, Bennell KL, et al. Risk factors for hamstring injuries in community level Australian football. Br J Sports Med 2005;39:106–10. [Abstract/FREE Full Text](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiYmpzcG9ydHMiO3M6NToicmVzaWQiO3M6ODoiMzkvMi8xMDYiO3M6NDoiYXRvbSI7czoyMjoiL2Jqc3BvcnRzLzQ2LzIvODEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 19. Verrall GM, Slavotinek JP, Barnes PG. The effect of sports specific training on reducing the incidence of hamstring injuries in professional Australian Rules football players. Br J Sports Med 2005;39:363–8. [Abstract/FREE Full Text](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiYmpzcG9ydHMiO3M6NToicmVzaWQiO3M6ODoiMzkvNi8zNjMiO3M6NDoiYXRvbSI7czoyMjoiL2Jqc3BvcnRzLzQ2LzIvODEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 20. Arnason A, Sigurdsson SB, Gudmundsson A, et al. Risk factors for injuries in football. Am J Sports Med 2004;32:(Suppl 1):5–16S. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1177/0363546503258912&link_type=DOI) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000189303700001&link_type=ISI) 21. Gabbe BJ, Bennell KL, Finch CF, et al. Predictors of hamstring injury at the elite level of Australian football. Scand J Med Sci Sports 2006;16:7–13. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1111/j.1600-0838.2005.00441.x&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=16430675&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000234801100003&link_type=ISI) 22. Engebretsen AH, Myklebust G, Holme I, et al. Intrinsic risk factors for hamstring injuries among male soccer players: a prospective cohort study. Am J Sports Med 2010;38:1147–53. [Abstract/FREE Full Text](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToiYW1qc3BvcnRzIjtzOjU6InJlc2lkIjtzOjk6IjM4LzYvMTE0NyI7czo0OiJhdG9tIjtzOjIyOiIvYmpzcG9ydHMvNDYvMi84MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 23. Foreman TK, Addy T, Baker S, et al. Prospective studies into the causation of hamstring injuries in sport: a systematic review. Phys Ther Sport 2006;7:101–9. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1016/j.ptsp.2006.02.001&link_type=DOI) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000238782100008&link_type=ISI) 24. Prior M, Guerin M, Grimmer K. An evidence-based approach to hamstring strain injury: a systematic review of the literature. Sports Health: A Multidisciplinary Approach 2009;1:154–64. [Abstract/FREE Full Text](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NToic3BzcGgiO3M6NToicmVzaWQiO3M6NzoiMS8yLzE1NCI7czo0OiJhdG9tIjtzOjIyOiIvYmpzcG9ydHMvNDYvMi84MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 25. Orchard J, Marsden J, Lord S, et al. Preseason hamstring muscle weakness associated with hamstring muscle injury in Australian footballers. Am J Sports Med 1997;25:81–5. [Abstract/FREE Full Text](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToiYW1qc3BvcnRzIjtzOjU6InJlc2lkIjtzOjc6IjI1LzEvODEiO3M6NDoiYXRvbSI7czoyMjoiL2Jqc3BvcnRzLzQ2LzIvODEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 26. Orchard JW. Intrinsic and extrinsic risk factors for muscle strains in Australian football. Am J Sports Med 2001;29:300–3. [Abstract/FREE Full Text](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToiYW1qc3BvcnRzIjtzOjU6InJlc2lkIjtzOjg6IjI5LzMvMzAwIjtzOjQ6ImF0b20iO3M6MjI6Ii9ianNwb3J0cy80Ni8yLzgxLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 27. Hägglund M, Waldén M, Ekstrand J. Previous injury as a risk factor for injury in elite football: a prospective study over two consecutive seasons. Br J Sports Med 2006;40:767–72. [Abstract/FREE Full Text](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiYmpzcG9ydHMiO3M6NToicmVzaWQiO3M6ODoiNDAvOS83NjciO3M6NDoiYXRvbSI7czoyMjoiL2Jqc3BvcnRzLzQ2LzIvODEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 28. Bennell K, Wajswelner H, Lew P, et al. Isokinetic strength testing does not predict hamstring injury in Australian Rules footballers. Br J Sports Med 1998;32:309–14. [Abstract](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiYmpzcG9ydHMiO3M6NToicmVzaWQiO3M6ODoiMzIvNC8zMDkiO3M6NDoiYXRvbSI7czoyMjoiL2Jqc3BvcnRzLzQ2LzIvODEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 29. Silder A, Heiderscheit BC, Thelen DG, et al. MR observations of long-term musculotendon remodeling following a hamstring strain injury. Skeletal Radiol 2008;37:1101–19. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1007/s00256-008-0546-0&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=18649077&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000260379900006&link_type=ISI) 30. Huijing PA. Muscular force transmission necessitates a multilevel integrative approach to the analysis of function of skeletal muscle. Exerc Sport Sci Rev 2003;31:167–75. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1097/00003677-200310000-00003&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=14571955&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000185836200003&link_type=ISI) 31. Silder A, Reeder SB, Thelen DG. The influence of prior hamstring injury on lengthening muscle tissue mechanics. J Biomech 2010;43:2254–60. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1016/j.jbiomech.2010.02.038&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=20472238&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000282112300002&link_type=ISI) 32. Mendiguchia J, Brughelli M. A return-to-sport algorithm for acute hamstring injuries. Phys Ther Sport 2011;12:2–14. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1016/j.ptsp.2010.07.003&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=21256444&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000287467600002&link_type=ISI) 33. Henderson G, Barnes CA, Portas MD. Factors associated with increased propensity for hamstring injury in English Premier League soccer players. J Sci Med Sport 2010;13:397–402. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1016/j.jsams.2009.08.003&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=19800844&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000279737100006&link_type=ISI) 34. Bradley PS, Portas MD. The relationship between preseason range of motion and muscle strain injury in elite soccer players. J Strength Cond Res 2007;21:1155–9. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1519/R-20416.1&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=18076233&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000251628400029&link_type=ISI) 35. Witvrouw E, Danneels L, Asselman P, et al. Muscle flexibility as a risk factor for developing muscle injuries in male professional soccer players. A prospective study. Am J Sports Med 2003;31:41–6. [Abstract/FREE Full Text](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToiYW1qc3BvcnRzIjtzOjU6InJlc2lkIjtzOjc6IjMxLzEvNDEiO3M6NDoiYXRvbSI7czoyMjoiL2Jqc3BvcnRzLzQ2LzIvODEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 36. Devlin L. Recurrent posterior thigh symptoms detrimental to performance in rugby union: predisposing factors. Sports Med 2000;29:273–87. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.2165/00007256-200029040-00005&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=10783902&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000086579000005&link_type=ISI) 37. Askling CM, Nilsson J, Thorstensson A. A new hamstring test to complement the common clinical examination before return to sport after injury. Knee Surg Sports Traumatol Arthrosc 2010;18:1798–803. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1007/s00167-010-1265-3&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=20852842&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000284375000030&link_type=ISI) 38. Dadebo B, White J, George KP. A survey of flexibility training protocols and hamstring strains in professional football clubs in England. Br J Sports Med 2004;38:388–94. [Abstract/FREE Full Text](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiYmpzcG9ydHMiO3M6NToicmVzaWQiO3M6ODoiMzgvNC8zODgiO3M6NDoiYXRvbSI7czoyMjoiL2Jqc3BvcnRzLzQ2LzIvODEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 39. Arnason A, Andersen TE, Holme I, et al. Prevention of hamstring strains in elite soccer: an intervention study. Scand J Med Sci Sports 2008;18:40–8. [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=17355322&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000253484400006&link_type=ISI) 40. Thacker SB, Gilchrist J, Stroup DF, et al. The impact of stretching on sports injury risk: a systematic review of the literature. Med Sci Sports Exerc 2004;36:371–8. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1249/01.MSS.0000117134.83018.F7&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=15076777&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000220131800004&link_type=ISI) 41. Herbert RD, Gabriel M. Effects of stretching before and after exercising on muscle soreness and risk of injury: systematic review. BMJ 2002;325:468. [Abstract/FREE Full Text](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjEyOiIzMjUvNzM2Mi80NjgiO3M6NDoiYXRvbSI7czoyMjoiL2Jqc3BvcnRzLzQ2LzIvODEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 42. Gabbe BJ, Bennell KL, Finch CF. Why are older Australian football players at greater risk of hamstring injury? J Sci Med Sport 2006;9:327–33. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1016/j.jsams.2006.01.004&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=16678486&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000239973100009&link_type=ISI) 43. Chumanov ES, Heiderscheit BC, Thelen DG. The effect of speed and influence of individual muscles on hamstring mechanics during the swing phase of sprinting. J Biomech 2007;40:3555–62. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1016/j.jbiomech.2007.05.026&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=17659291&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000251845100004&link_type=ISI) 44. Riley PO, Franz J, Dicharry J, et al. Changes in hip joint muscle-tendon lengths with mode of locomotion. Gait Posture 2010;31:279–83. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1016/j.gaitpost.2009.11.005&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=20022251&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000274584800025&link_type=ISI) 45. Franz JR, Paylo KW, Dicharry J, et al. Changes in the coordination of hip and pelvis kinematics with mode of locomotion. Gait Posture 2009;29:494–8. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1016/j.gaitpost.2008.11.011&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=19124245&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000264469300025&link_type=ISI) 46. Brockett CL, Morgan DL, Proske U. Predicting hamstring strain injury in elite athletes. Med Sci Sports Exerc 2004;36:379–87. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1249/01.MSS.0000117165.75832.05&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=15076778&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000220131800005&link_type=ISI) 47. Heiser TM, Weber J, Sullivan G, et al. Prophylaxis and management of hamstring muscle injuries in intercollegiate football players. Am J Sports Med 1984;12:368–70. [Abstract/FREE Full Text](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToiYW1qc3BvcnRzIjtzOjU6InJlc2lkIjtzOjg6IjEyLzUvMzY4IjtzOjQ6ImF0b20iO3M6MjI6Ii9ianNwb3J0cy80Ni8yLzgxLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 48. Lieholm W. Factors related to hamstring strains. J Sports Med 1978;18:71–6. [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=A1978FC95000012&link_type=ISI) 49. Worrell TW, Perrin DH, Gansneder BM, et al. Comparison of isokinetic strength and flexibility measures between hamstring injured and noninjured athletes. J Orthop Sports Phys Ther 1991;13:118–25. [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=18796850&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) 50. Schache AG, Kim HJ, Morgan DL, et al. Hamstring muscle forces prior to and immediately following an acute sprinting-related muscle strain injury. Gait Posture 2010;32:136–40. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1016/j.gaitpost.2010.03.006&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=20395142&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000279581000027&link_type=ISI) 51. Novacheck TF. The biomechanics of running. Gait Posture 1998;7:77–95. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1016/S0966-6362(97)00038-6&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=10200378&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000072475800012&link_type=ISI) 52. Gerber JP, Marcus RL, Dibble LE, et al. Effects of early progressive eccentric exercise on muscle size and function after anterior cruciate ligament reconstruction: a 1-year follow-up study of a randomized clinical trial. Phys Ther 2009;89:51–9. [Abstract/FREE Full Text](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToicHRqb3VybmFsIjtzOjU6InJlc2lkIjtzOjc6Ijg5LzEvNTEiO3M6NDoiYXRvbSI7czoyMjoiL2Jqc3BvcnRzLzQ2LzIvODEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 53. Alfredson H, Pietilä T, Jonsson P, et al. Heavy-load eccentric calf muscle training for the treatment of chronic Achilles tendinosis. Am J Sports Med 1998;26:360–6. [Abstract/FREE Full Text](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToiYW1qc3BvcnRzIjtzOjU6InJlc2lkIjtzOjg6IjI2LzMvMzYwIjtzOjQ6ImF0b20iO3M6MjI6Ii9ianNwb3J0cy80Ni8yLzgxLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 54. Askling C, Karlsson J, Thorstensson A. Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload. Scand J Med Sci Sports 2003;13:244–50. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1034/j.1600-0838.2003.00312.x&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=12859607&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000184204300005&link_type=ISI) 55. Goldman EF, Jones DE. Interventions for preventing hamstring injuries. Cochrane Database Syst Rev 2010;1:CD006782. 56. Gabbe BJ, Branson R, Bennell KL. A pilot randomised controlled trial of eccentric exercise to prevent hamstring injuries in community-level Australian Football. J Sci Med Sport 2006;9:103–9. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1016/j.jsams.2006.02.001&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=16574482&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000238897600018&link_type=ISI) 57. Engebretsen AH, Myklebust G, Holme I, et al. Prevention of injuries among male soccer players: a prospective, randomized intervention study targeting players with previous injuries or reduced function. Am J Sports Med 2008;36:1052–60. [Abstract/FREE Full Text](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToiYW1qc3BvcnRzIjtzOjU6InJlc2lkIjtzOjk6IjM2LzYvMTA1MiI7czo0OiJhdG9tIjtzOjIyOiIvYmpzcG9ydHMvNDYvMi84MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 58. Mason DL, Dickens V, Vail A. Rehabilitation for hamstring injuries. Cochrane Database Syst Rev 2007;1:CD004575. 59. Hoskins W, Pollard H. The management of hamstring injury – part 1: issues in diagnosis. Man Ther 2005;10:96–107. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1016/j.math.2005.03.006&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=15922230&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000230006000002&link_type=ISI) 60. Schache AG, Blanch PD, Rath DA, et al. Are anthropometric and kinematic parameters of the lumbo-pelvic-hip complex related to running injuries? Res Sports Med 2005;13:127–47. [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=16392444&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) 61. Sherry MA, Best TM. A comparison of 2 rehabilitation programs in the treatment of acute hamstring strains. J Orthop Sports Phys Ther 2004;34:116–25. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.2519/jospt.2004.34.3.116&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=15089024&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000220462400007&link_type=ISI) 62. Kuszewski M, Gnat R, Saulicz E. Stability training of the lumbo-pelvo-hip complex influence stiffness of the hamstrings: a preliminary study. Scand J Med Sci Sports 2009;19:260–6. [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=18384489&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000264310600017&link_type=ISI) 63. Rahnama N, Reilly T, Lees A, et al. Muscle fatigue induced by exercise simulating the work rate of competitive soccer. J Sports Sci 2003;21:933–42. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1080/0264041031000140428&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=14626373&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000186010900007&link_type=ISI) 64. Rahnama N, Lees A, Reilly T. Electromyography of selected lower-limb muscles fatigued by exercise at the intensity of soccer match-play. J Electromyogr Kinesiol 2006;16:257–63. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1016/j.jelekin.2005.07.011&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=16146698&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000237996800005&link_type=ISI) 65. Greig M. The influence of soccer-specific fatigue on peak isokinetic torque production of the knee flexors and extensors. Am J Sports Med 2008;36:1403–9. [Abstract/FREE Full Text](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToiYW1qc3BvcnRzIjtzOjU6InJlc2lkIjtzOjk6IjM2LzcvMTQwMyI7czo0OiJhdG9tIjtzOjIyOiIvYmpzcG9ydHMvNDYvMi84MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 66. Thorlund JB, Aagaard P, Madsen K. Rapid muscle force capacity changes after soccer match play. Int J Sports Med 2009;30:273–8. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1055/s-0028-1104587&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=19199196&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000265111600007&link_type=ISI) 67. Pinniger GJ, Steele JR, Groeller H. Does fatigue induced by repeated dynamic efforts affect hamstring muscle function? Med Sci Sports Exerc 2000;32:647–53. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1097/00005768-200003000-00015&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=10731008&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000085935000015&link_type=ISI) 68. Small K, McNaughton LR, Greig M, et al. Soccer fatigue, sprinting and hamstring injury risk. Int J Sports Med 2009;30:573–8. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1055/s-0029-1202822&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=19455478&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000269084400004&link_type=ISI) 69. Askling C, Saartok T, Thorstensson A. Type of acute hamstring strain affects flexibility, strength, and time to return to pre-injury level. Br J Sports Med 2006;40:40–4. [Abstract/FREE Full Text](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiYmpzcG9ydHMiO3M6NToicmVzaWQiO3M6NzoiNDAvMS80MCI7czo0OiJhdG9tIjtzOjIyOiIvYmpzcG9ydHMvNDYvMi84MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 70. Askling CM, Tengvar M, Saartok T, et al. Acute first-time hamstring strains during high-speed running: a longitudinal study including clinical and magnetic resonance imaging findings. Am J Sports Med 2007;35:197–206. [Abstract/FREE Full Text](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToiYW1qc3BvcnRzIjtzOjU6InJlc2lkIjtzOjg6IjM1LzIvMTk3IjtzOjQ6ImF0b20iO3M6MjI6Ii9ianNwb3J0cy80Ni8yLzgxLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 71. Askling CM, Tengvar M, Saartok T, et al. Proximal hamstring strains of stretching type in different sports: injury situations, clinical and magnetic resonance imaging characteristics, and return to sport. Am J Sports Med 2008;36:1799–804. [Abstract/FREE Full Text](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToiYW1qc3BvcnRzIjtzOjU6InJlc2lkIjtzOjk6IjM2LzkvMTc5OSI7czo0OiJhdG9tIjtzOjIyOiIvYmpzcG9ydHMvNDYvMi84MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 72. Clarkson PM, Hubal MJ. Exercise-induced muscle damage in humans. Am J Phys Med Rehabil 2002;81:S52–69. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1097/00002060-200211001-00007&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=12409811&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000178883700007&link_type=ISI) 73. Kubota J, Ono T, Araki M, et al. Non-uniform changes in magnetic resonance measurements of the semitendinosus muscle following intensive eccentric exercise. Eur J Appl Physiol 2007;101:713–20. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1007/s00421-007-0549-x&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=17724609&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000250117200007&link_type=ISI) 74. Kubota J, Ono T, Araki M, et al. Relationship between the MRI and EMG measurements. Int J Sports Med 2009;30:533–7. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1055/s-0029-1202352&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=19301224&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000268067800011&link_type=ISI) 75. Larsen RG, Ringgaard S, Overgaard K. Localization and quantification of muscle damage by magnetic resonance imaging following step exercise in young women. Scand J Med Sci Sports 2007;17:76–83. [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=17305942&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000242963200011&link_type=ISI) 76. Sesto ME, Radwin RG, Block WF, et al. Anatomical and mechanical changes following repetitive eccentric exertions. Clin Biomech (Bristol, Avon) 2005;20:41–9. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1016/j.clinbiomech.2004.09.002&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=15567535&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) 77. Armfield DR, Kim DH, Towers JD, et al. Sports-related muscle injury in the lower extremity. Clin Sports Med 2006;25:803–42. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1016/j.csm.2006.06.011&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=16962427&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000241024400011&link_type=ISI) 78. Thelen DG, Chumanov ES, Best TM, et al. Simulation of biceps femoris musculotendon mechanics during the swing phase of sprinting. Med Sci Sports Exerc 2005;37:1931–8. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1249/01.mss.0000176674.42929.de&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=16286864&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000233451000016&link_type=ISI) 79. Rehorn MR, Blemker SS. The effects of aponeurosis geometry on strain injury susceptibility explored with a 3D muscle model. J Biomech 2010;43:2574–81. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1016/j.jbiomech.2010.05.011&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=20541207&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000282545900018&link_type=ISI) 80. Blemker SS, Delp SL. Three-dimensional representation of complex muscle architectures and geometries. Ann Biomed Eng 2005;33:661–73. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1007/s10439-005-1433-7&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=15981866&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000229740900010&link_type=ISI) 81. Woodley SJ, Mercer SR. Hamstring muscles: architecture and innervation. Cells Tissues Organs (Print) 2005;179:125–41. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1159/000085004&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=15947463&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000229576700005&link_type=ISI) 82. Clanton TO, Coupe KJ. Hamstring strains in athletes: diagnosis and treatment. J Am Acad Orthop Surg 1998;6:237–48. [Abstract](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NToiamFhb3MiO3M6NToicmVzaWQiO3M6NzoiNi80LzIzNyI7czo0OiJhdG9tIjtzOjIyOiIvYmpzcG9ydHMvNDYvMi84MS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 83. Koulouris G, Connell D. Evaluation of the hamstring muscle complex following acute injury. Skeletal Radiol 2003;32:582–9. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1007/s00256-003-0674-5&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=12942206&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000185602600005&link_type=ISI) 84. Quatman CE, Quatman CC, Hewett TE. Prediction and prevention of musculoskeletal injury: a paradigm shift in methodology. Br J Sports Med 2009;43:1100–7. [Abstract/FREE Full Text](http://bjsm.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiYmpzcG9ydHMiO3M6NToicmVzaWQiO3M6MTA6IjQzLzE0LzExMDAiO3M6NDoiYXRvbSI7czoyMjoiL2Jqc3BvcnRzLzQ2LzIvODEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 85. McHugh MP, Johnson CD, Morrison RH. The role of neural tension in hamstring flexibility. Scand J Med Sci Sports 2010;(In Press). 86. Oh JS, Cynn HS, Won JH, et al. Effects of performing an abdominal drawing-in maneuver during prone hip extension exercises on hip and back extensor muscle activity and amount of anterior pelvic tilt. J Orthop Sports Phys Ther 2007;37:320–4. [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=17612358&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000247171600005&link_type=ISI) 87. Brughelli M, Cronin J, Mendiguchia J, et al. Contralateral leg deficits in kinetic and kinematic variables during running in Australian Rules football players with previous hamstring injuries. J Strength Cond Res 2010;24:2539–44. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1519/JSC.0b013e3181b603ef&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=19996776&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000281612400037&link_type=ISI) 88. Pandy MG, Andriacchi TP. Muscle and joint function in human locomotion. Annu Rev Biomed Eng 2010;12:401–33. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1146/annurev-bioeng-070909-105259&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=20617942&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000281447400016&link_type=ISI) 89. Wagner T, Behnia N, Ancheta WK, et al. Strengthening and neuromuscular reeducation of the gluteus maximus in a triathlete with exercise-associated cramping of the hamstrings. J Orthop Sports Phys Ther 2010;40:112–19. [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=20118522&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000274587100009&link_type=ISI) 90. 1. Vleeming A, 2. et al. Van Wingerden JP, Vleeming A, Kleinrensink GJ, et al. The role of the hamstrings in pelvic and spinal function. In: Vleeming A, et al. eds. Movement, Stability and Low Back Pain. Edinburgh: Churchill Livingstone 1997. 91. Vleeming A, Stoeckart R, Snijders DJ. The sacrotuberous ligament: a conceptual approach to its dynamic role in stabilising the SIJ. Clin Biomech 1989;4:204–9. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1016/0268-0033(89)90003-X&link_type=DOI) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=A1989CA91600003&link_type=ISI) 92. Vleeming A, Van Wingerden JP, Snijders CJ, et al. Load application to the sacrotuberous ligament influences SIJ mechanics. Clin Biomech 1989;4:204–9. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1016/0268-0033(89)90003-X&link_type=DOI) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=A1989CA91600003&link_type=ISI) 93. Méndez-Sánchez R, Alburquerque-Sendín F, Fernández-de-las-Peñas C, et al. Immediate effects of adding a sciatic nerve slider technique on lumbar and lower quadrant mobility in soccer players: a pilot study. J Altern Complement Med 2010;16:669–75. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.1089/acm.2009.0403&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=20569035&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000279033300014&link_type=ISI) 94. Verhagen EA, van Stralen MM, van Mechelen W. Behaviour, the key factor for sports injury prevention. Sports Med 2010;40:899–906. [CrossRef](http://bjsm.bmj.com/lookup/external-ref?access_num=10.2165/11536890-000000000-00000&link_type=DOI) [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=20942507&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000284301600001&link_type=ISI) 95. Finch C. A new framework to research leading in injury prevention. J Sci Med Sport 2006;9:3–9. [PubMed](http://bjsm.bmj.com/lookup/external-ref?access_num=16616614&link_type=MED&atom=%2Fbjsports%2F46%2F2%2F81.atom) [Web of Science](http://bjsm.bmj.com/lookup/external-ref?access_num=000238897600001&link_type=ISI)