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ABSTRACT
Objective To determine the effectiveness of physical 
activity interventions involving mobile applications 
(apps) or trackers with automated and continuous self- 
monitoring and feedback.
Design Systematic review and meta- analysis.
Data sources PubMed and seven additional databases, 
from 2007 to 2020.
Study selection Randomised controlled trials in adults 
(18–65 years old) without chronic illness, testing a 
mobile app or an activity tracker, with any comparison, 
where the main outcome was a physical activity measure. 
Independent screening was conducted.
Data extraction and synthesis We conducted 
random effects meta- analysis and all effect sizes were 
transformed into standardised difference in means 
(SDM). We conducted exploratory metaregression 
with continuous and discrete moderators identified as 
statistically significant in subgroup analyses.
Main outcome measures Physical activity: daily step 
counts, min/week of moderate- to- vigorous physical 
activity, weekly days exercised, min/week of total 
physical activity, metabolic equivalents.
Results Thirty- five studies met inclusion criteria 
and 28 were included in the meta- analysis (n=7454 
participants, 28% women). The meta- analysis showed 
a small- to- moderate positive effect on physical activity 
measures (SDM 0.350, 95% CI 0.236 to 0.465, I2=69%, 
T2=0.051) corresponding to 1850 steps per day (95% CI 
1247 to 2457). Interventions including text- messaging 
and personalisation features were significantly more 
effective in subgroup analyses and metaregression.
Conclusion Interventions using apps or trackers seem 
to be effective in promoting physical activity. Longer 
studies are needed to assess the impact of different 
intervention components on long- term engagement and 
effectiveness.

INTRODUCTION
Physical activity is essential to the prevention and 
treatment of multiple chronic conditions1 2 and 
can prevent premature mortality.3 Any intensity of 
physical activity substantially reduces risk of death 
in a dose–response manner.4 Nonetheless, more 
than a quarter of adults worldwide are insufficiently 
active,5 and physical inactivity represents a leading 
cause of death worldwide.6 The global pandemic 

of physical inactivity is responsible for at least 
$67.5 billion of economic burden per year.7

Behaviour change interventions to promote phys-
ical activity can include several behaviour change 
strategies and components—so- called behaviour 
change techniques (BCTs).8 Two BCTs seem to be 
particularly effective: self- monitoring and feed-
back on behaviour.9 For instance, interventions 
using pedometers can facilitate self- monitoring 
and feedback on step counts, having shown 
significant improvements in the short term (4 
months).10 11 However, these pedometer interven-
tions are burdensome to maintain, as users have to 
use a step diary to keep track of their step counts.

In contrast, modern- day smartphone applica-
tions (apps) and activity trackers (eg, wearable 
fitness bands and smartwatches) enable automated 
and continuous self- monitoring and feedback on 
physical activity. Current smartphones and trackers 
enable the burdenless measurement of activity with 
acceptable accuracy,12 as well as allow for contin-
uous access to recorded data (longitudinally and in 
real time), via apps or the tracker’s display. Never-
theless, a major challenge with apps and trackers is 
their high drop- off rate,13 with reports of a third 
of users of activity trackers abandoning their device 
in the first 6 months.14 It has been suggested that 
reducing user burden and providing features like 
goal setting, personalisation and game- like func-
tionality (ie, gamification) may facilitate engage-
ment, promote retention and increase intervention 
effectiveness.15–17

Existing reviews of apps and trackers have not 
yet focused on seemingly healthy adults18–23 and 
technology enabling automated and continuous 
self- monitoring and feedback, with apps often 
still requiring users to connect an accelerom-
eter to a computer periodically via a hardware 
connection.20 22 24–30 These reviews of older apps 
and trackers have shown non- significant22 24 26 
or small- to- moderate positive results20 25 28 with 
high heterogeneity, often mixing very different 
types of populations apart from healthy adults 
(eg, children,26 elderly22 27 28 and chronic condi-
tions20 25 27 28). Furthermore, retention and 
engagement with these interventions, and effec-
tiveness of different intervention features (eg, 
personalisation and gamification) have seldom 
been analysed.
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The aim of this systematic review and meta- analysis was to 
evaluate the characteristics and effectiveness of interventions 
involving contemporary mobile apps or physical activity trackers 
(ie, enabling automated and continuous self- monitoring and 
feedback) in promoting physical activity, as well as in improving 
engagement and retention, in adults (18–65 years old) without 
chronic disease. A secondary aim was to explore and compare 
the effect of specific features in these interventions using 
metaregression.

METHODS
This systematic review is reported in accordance with the 
Preferred Reporting Items for Systematic Reviews and Meta- 
Analyses statement.31 We followed a protocol registered with 
PROSPERO (CRD42017057854) for a broader review on phys-
ical activity, diet and weight loss. This paper focuses on physical 
activity; papers focusing on weight loss and diet were excluded 
at the full- text screening stage and will be analysed in a separate 
publication.

Search strategy
A search of the literature was performed in January 2017 (and 
updated continuously up to January 2020) using PubMed, 
Embase, CINAHL, PsycInfo, SciELO, ACM Digital Library, 
Cochrane Central Register of Controlled Trials and  Clinical-
Trials. gov. Articles were included if published between January 
2007 and January 2020 since the launch of the first app stores. 
No language restrictions were applied. Search strings combined 
free terms (eg, smartphone, application and wearable) and 
controlled vocabulary (complete search strategy in online 
supplemental eMethods). Reference lists of relevant articles 
were also screened. Citations were uploaded to EndNote V.X9, 
where duplicates were removed.

Study selection criteria
We included randomised controlled trials (RCTs) where the 
population of interest was adults aged 18–65 years old without 
chronic disease; high adiposity or high body mass index (risk 
factors for chronic disease) were not exclusion criteria. We 
selected this study population because the relative homogeneity 
allows for comparing specific features and because youth, the 
elderly and those living with chronic diseases have different 
needs, barriers and enablers regarding physical activity that 
may not generalise to the general population. The interven-
tion included a mobile app or an activity tracker enabling auto-
mated and continuous self- monitoring and feedback on physical 
activity measures. Our definition excludes pedometers and 
accelerometers if they did not offer ongoing access to tracked 
measures throughout time (either via the tracker’s display or 
by wirelessly syncing with an app). Given that this definition is 
compatible with the state- of- the- art in technologies to promote 
physical activity, we simply refer to them as ‘smartphone apps’ 
and ‘activity trackers’ throughout the paper.

The comparison group was either a true control (eg, given 
no intervention—usual care, waiting list—or an intervention 
not including an app or a tracker) or was an active control (ie, 
receiving a control intervention including an app or a tracker); 
and the main outcomes were measures of physical activity 
(online supplemental eTable 1 and eMethods 2).

Screening and data extraction
Title and abstract screening and full- paper screening were 
conducted by six pairs of independent investigators. Two 

investigators extracted information from the included studies 
into a Microsoft Excel spreadsheet (version 16.43): publication 
information, mobile technology, intervention characteristics, 
study duration, participant and setting characteristics, outcomes, 
behaviour change theories, retention rates (percentage completing 
follow- up assessment), engagement measures, funding sources, 
conflicts of interest, incentives for participation, adherence to 
reporting guidelines, personalisation and gamification features. 
Coding of BCTs according to the BCT taxonomy8 was conducted 
by three trained investigators. Included studies were assessed 
independently by two researchers using Cochrane’s risk of bias 
tool (domains assessed: random sequence allocation, allocation 
concealment, blinding of participants and personnel, blinding 
of outcome assessment, incomplete outcome data and selective 
reporting).32 33 Disagreements in screening, data extraction and 
risk of bias assessment were resolved by a third investigator. 
Data extraction and coding of BCTs were not conducted inde-
pendently. For multiarm trials, data extraction was conducted 
for the two arms of interest (online supplemental eMethods 
3). Data extraction was complemented with information from 
protocol papers, trial registrations and emails to authors, as well 
as known basic features of commercial trackers and mobile apps.

Strategy for data synthesis
A narrative synthesis was conducted for all studies. Studies for 
which it was possible to calculate an effect size were combined 
for a summary effect. Outcomes from cluster RCTs were 
included when adjusted for the effects of clustering. Whenever 
a single study reported multiple outcomes, the outcome to be 
included in the meta- analysis was selected through consensus 
among the authors following predefined rules to minimise bias 
(online supplemental eMethods 3).

Continuous outcomes were pooled together and all effect 
sizes were transformed into the standardised difference in means 
(SDM).34 Estimates of mean physical activity effect sizes were 
also converted from SDM to number of steps per day for ease of 
interpretation (online supplemental eMethods 4).

We used random effects models for all analyses; the between- 
studies variance (T2) was estimated using the method of moments. 
We used I2 to describe the proportion of the variance in observed 
effects that is due to variance in true effects.35 The presence of 
publication bias was evaluated by the use of a funnel plot and the 
Duval and Tweedie trim- and- fill method.35 We used the Grading 
of Recommendations Assessment, Development and Evaluation 
(GRADE) system for grading the body of evidence.36

Sensitivity analyses, subgroup analyses and metaregression
Seven sensitivity analyses were conducted to assess the robustness 
of the findings (online supplemental eMethods 5). The cause of 
observed statistical heterogeneity was explored using subgroup 
analysis. We conducted 27 subgroup analyses, of which 16 were 
planned and 11 were post hoc (online supplemental eMethods 
6). We conducted metaregression with statistically significant 
moderators identified in subgroup analyses, a dichotomous vari-
able representing studies where the app or tracker was the only 
difference between intervention and control, and continuous 
moderators (number of BCTs in the intervention, retention rate 
and study duration) for hypothesis- generating purposes. R2 was 
calculated to determine the proportion of total between- study 
variance explained by the model. Comprehensive Meta- Analysis 
V.3 was used for all computations. The significance level for all 
statistical tests was set at a p value of <0.05, two- tailed; 95% CIs 
were calculated where applicable.
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Patient and public involvement
Although this study contained no direct consumer involve-
ment, post hoc subgroup analyses were informed by previous 
work where consumer perspectives and needs in a physical 
activity intervention were explored.37 The results from the 
present study will be disseminated through the institutional 
websites and press releases.

RESULTS
The database search retrieved 10 548 articles, after 2662 
duplicates were removed (figure 1). After title and abstract 
screening, 10 347 articles were excluded. Full- text screening 
was conducted for the remaining 201 papers; 44 additional 
articles were found via updates of the database searches and 
reference lists of included papers. A further 210 articles were 
excluded (online supplemental eResults 1). The kappa statistic 
was 0.57 (fair agreement) for the title and abstract screening 
and 0.78 (substantial agreement) for the full- text screening, 
before consensus agreement was reached (online supplemental 
eTable 2). Although 35 studies met inclusion criteria, in 7 
studies it was not possible to calculate an effect size to include 
in the meta- analysis (online supplemental eTables 3-5). The 
final number of included studies was 28.38–65 Of these, one 
was a doctoral thesis40 and another was a working paper57; the 
remaining were published articles.

Description of included studies
The 28 studies were published between 2014 and 2019, and 
were mainly (n=20) conducted in the USA39 40 45 47–61 63 64 
(table 1). Study duration varied between 2 and 40 weeks (mean 
duration: 13 weeks). Studies involved a total of 7454 partic-
ipants, including 2107 (28%) women; 14 studies had a 

sample size smaller than 100, and 17 studies had less than 
50 participants in the active intervention arm. In 12 studies, 
recruitment included only physically inactive or sedentary 
adults,40–42 46–48 51 54 55 57 58 64 and in 6 studies, recruitment 
included only overweight or obese individuals.38 41 47 50 53 64 
Risk of bias was assessed as low for at least 4 out of 6 cate-
gories in 17 studies38 40 42–45 48–50 52 53 56 58 60 61 64 65 (online 
supplemental eTable 6). In seven articles, the authors 
declared relevant conflicts of interest38 45 48 50 53 56 60 (three 
papers had no conflict of interest statement, online supple-
mental eTable 7). Adherence to reporting guidelines was 
explicitly mentioned in eight studies40–43 48 49 58 65 (online 
supplemental eTable 7). Physical activity outcomes were 
measured with a research- grade accelerometer in 11 
studies,38 40 42–44 46 47 51 55 59 64 self- reported (questionnaire) in 
3 studies,39 41 63 and assessed with a mobile app or consumer- 
grade activity tracker in 14 studies45 48–50 52–54 56–58 60–62 65 (online 
supplemental eTable 8). Daily step count was the outcome in 21 
studies38 40 42 43 45 46 48–54 56 57 59–62 64 65 and moderate- to- vigorous 
physical activity was the outcome in four studies44 47 55 58; three 
studies had different outcomes (all self- reported)—weekly 
days exercised, total physical activity (min/week) and meta-
bolic equivalents per week (online supplemental eTable 8). All 
extracted outcomes are openly available online (https:// osf. io/ 
d3rnu/).

Participant engagement with the intervention was 
mentioned in 18 studies (online supplemental eTable 9). There 
was inconsistency in metrics reported. The most commonly 
reported measure across studies was the percentage of daily 
usage (six studies),41 42 45 47–49 which varied between 58.3% 
and 97.4% (mean 79.9, SD 14.5). Four studies reported on 
engagement changes throughout time, showing progressively 

Figure 1 Flowchart of included studies. A total of 28 studies were included in the meta- analysis. 1Other databases include SciELO, Cochrane Central 
Register of Controlled Trials and ACM Digital Library. 2Other sources include reference lists of included articles and database search updates.
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lower engagement with the intervention.43 44 51 55 Reten-
tion rates varied between 61% and 100% for the interven-
tion group (mean 90.5%, SD 10.2) (online supplemental 
eTable 9). In 15 studies, participants received incentives 
for study compliance and completion, most commonly gift 
vouchers38 40–42 44 45 47 50 52–54 56 58–60 (online supplemental 
eTable 10).

Intervention and control group components and BCTs
Studies were grouped according to whether or not the control 
group involved a smartphone app or tracker enabling automatic 
self- monitoring and feedback: true control (12 studies)38–49 or 
active control (16 studies)50–65 (table 2). Most interventions 
(n=20) included a physical activity tracker, with or without a 
mobile app38–49 51 52 54 56 57 59 64 (12 studies included a tracker 
with an app); eight interventions used a smartphone app 
without a tracker53 55 58 60–63 65 (table 2 and online supple-
mental eTable 11). Other common intervention components 
included email,39 43 45 48 49 53–57 59–61 63 human involvement 

(face- to- face or phone calls)38 42 43 46 47 49 51 55 62 64 65 and text 
messaging.45 48 53 55 56 60 61 64 65 There were only five studies 
where the only different components between intervention 
and control were the tracker or the smartphone app for self- 
monitoring and feedback on physical activity.40 41 43 58 59

Behaviour change theories were mentioned in 19 
studies,38 40–42 44–48 50–52 54–58 62 63 the most common being 
social cognitive theory40–42 46 52 55 58 (online supplemental 
eTable 11). The mean number of BCTs present in interven-
tions was 8.1 (SD 3.2) and in controls it was 2.9 (SD 2.3). 
Apart from BCTs in the ‘feedback and monitoring’ group, 
the most common groups of BCTs present in the intervention 
were ‘goals and planning’ and ‘reward and threat’ (figure 2 
and online supplemental eTable 11), and the most frequent 
techniques were goal setting,38 39 41 42 44–48 50 51 54 55 60–65 
prompts/cues,43 45 48–52 54 55 57–59 62–65 instruction on how 
to perform the behaviour38 40 42–44 46 48 51 54 55 58 62 63 65 and 
social support.38 41 42 44–46 51 52 58 Gamification or exergames 
were present in 14 studies38 39 44–46 49 50 53 55–58 60 63 (online 

Table 1 Characteristics of studies included in the meta- analysis

First author, year, country* Participants† N (I, C),‡ women (n) Duration

True control group: no tracker or app component

  Wyke, 2019, Netherlands, Norway, Portugal38 Men, BMI≥27, 30–65 years 1113 (560, 553), 0 3months

  Donoghue, 2018, USA39 17–50 years, first year medical students 3- arm N 120 (40, 40), 41 10months

  Pope, 2018, USA40 Inactive,§ BMI≥18.5, 18–35 years 38 (19, 19); 28 3months

  Vandelanotte, 2018, Australia41 Inactive,§ BMI 25–40,≥18 years 243 (121, 122), 182 3months

  Ashton, 2017, Australia42 Men, inactive,§ 18–25 years 50 (26, 24), 0 3months

  Brakenridge, 2016, Australia43 Desk- based office workers 153 (66, 87), 70 3months

  Finkelstein, 2016, Singapore44 21–65 years, office workers (13 worksites) 4- arm N 800 (203, 201), 212 6months

  Poirier, 2016, USA45 Office workers 265 (133, 132), 175 1.5months

  Ashe, 2015, Canada46 Women, inactive,¶ 55–70 years 25 (13, 12), 25 6months

  Cadmus- Bertram, 2015, USA47 Women, inactive,** BMI≥25, postmenopause 51 (25, 26), 51 4months

  Martin, 2015, USA48 Inactive,†† 18–69 years, CVD prevention centre 3- arm N 48 (16;16); 15 5 weeks

  Thorndike, 2014, USA49 21–45 years, medical residents 104 (52, 52), 54 1.5months

Active control with a tracker or app component

  Patel, 2019, USA50 BMI≥25 4- arm N 602 (150, 151), 175 6months

  Ellingson, 2019, USA51 Inactive,§ 24–65 years 91 (45, 46), 48 3months

  Zhang, 2019, USA52 Women, 18–35 years, African–American 91 (44, 47), 91 3months

  Patel, 2018, USA53 BMI≥27, university staff 4- arm N 209 (44, 65), 160 13 weeks

  Robinson, 2018, USA54 Inactive,§ 35–69 years 63 (31, 32), 45 5 weeks

  Fanning, 2017, USA55 Inactive,** 30–54 years 4- arm N 116 (29, 87), 93 3months

  Patel, 2017, USA56 Family members in Framingham Study 206 (102, 104), 112 3months

  John, 2016, USA57 Inactive,‡‡ AchieveMint users 2055 (1027, 1028),NR 2 weeks

  King, 2016, USA58 Inactive** or sedentary,§§ ≥45 years 4- arm N 95 (22, 27), 36 2months

  Melton, 2016, USA59 African–American women, 18–24 years 69 (28, 41), 69 2months

  Patel, 2016, USA (I)60 Employees 4- arm N 304 (68, 80), 108 13 weeks

  Patel, 2016, USA (II)61 Employees/family members of employees 4- arm N 288 (64, 100), 124 13 weeks

  Walsh, 2016, Ireland62 Healthy adults 58 (29, 29), 40 5 weeks

  Cowdery, 2015, USA63 18–69 years 40 (20, 20), 34 3months

  Wang, 2015, USA64 Inactive,§ BMI≥25, 18–69 years 67 (33, 34), 61 1.5months

  Glynn, 2014, UK65 Adults 90 (45, 45), 58 2months

*Ordered by study year.
†Participant eligibility criteria, organised by gender, level of physical activity, BMI, age, other characteristics, where reported.
‡In studies with more than two arms, the intervention of interest and control groups were selected as per defined in the methods.
§<150–300 min/week of MVPA.
¶<30min/week MVPA.
**<60 min/week MVPA.
††<90 min/week MVPA.
‡‡<70th percentile for mean daily steps in AchieveMint platform.
§§Sitting time ≥10 hours/day.
app, smartphone application; BMI, body mass index; C, control; CVD, cardiovascular disease; I, intervention; MVPA, moderate- to- vigorous physical activity; NR, not reported.
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Table 2 Components and BCTs in intervention and control groups*†

Author

Characteristics and BCTs of the intervention

Characteristics of the control§Tracker and/or app‡ Other intervention components

True control group: no app or tracker component

Wyke38 Tracker+app: social support and comparison Group meetings: goal setting, action planning, 
review goals, social support, instruction 
on doing the behaviour, info on health 
consequences and emotional consequences, 
behavioural practice, graded tasks, credible 
source, identity associated with new behaviour

None

Donoghue39 Tracker (Fitbit) Emails, mentored walks/runs: goal setting, 
social comparison, behaviour practice and 
substitution, graded tasks, restructuring the 
physical environment

None

Pope40 Tracker+app (Polar) Facebook group: instruction on doing the 
behaviour

Facebook group

Vandelanotte41 Tracker (Fitbit) Website: goal setting, problem solving, action 
planning, feedback, self- monitoring, social 
support, info on health consequences

Website

Ashton42 Tracker+app (Jawbone): goal setting Facebook group, website, meetings, resistance 
band, leaflet: problem solving, review goals, 
social support, instruction on doing the 
behaviour, demonstration of the behaviour, 
behaviour practice, habit formation, credible 
source; adding objects

None

Brakenridge43 Tracker+app (LUMOback) Leaflet, emails, meetings: feedback, instruction 
on doing the behaviour, info on health 
consequences and on others approval, cues

Leaflet, emails, meetings

Finkelstein44 Tracker (Fitbit) Fitbit website+control: goal setting, social 
support and comparison, unspecific reward

Leaflets

Poirier45 Tracker (Pebble+) Website (+SNS), emails, SMS: goal setting, 
social support and comparison, cues, graded 
tasks, unspecific reward

None

Ashe46 Tracker+app (Fitbit) Fitbit website, meetings, transport tickets: 
goal setting, problem solving, action planning, 
review goals, social support and comparison, 
instruction on doing the behaviour, info on 
health consequences, graded tasks, adding 
objects

Meetings

Cadmus47 Tracker (Fitbit) Fitbit website, meeting: goal setting, action 
planning, review goals, commitment

Pedometer, leaflet

Martin48 Tracker+app (Fitbug) Website, emails, SMS: goal setting, instruction 
on doing the behaviour, cues, habit formation, 
credible source, unspecific reward

None

Thorndike49 Tracker (Fitbit): reward Fitbit website+control Gym access, personal training, meetings, 
emails

Active control with an app or tracker component

Patel, 201950 Tracker (Withings Activité Steel)+app SMS/emails, gamification: goal setting, 
behavioural contract, commitment, anticipated 
regret, social comparison, cues, removal of 
aversive stimulus, graded tasks, non- specific 
incentive+reward, future punishment, 
punishment

Tracker (Withings Activité Steel)+app+SMS/
emails

Ellingson51 Tracker+app (Fitbit) Motivational interviewing, habit education 
(meetings+phone): goal setting, problem 
solving; instruction on doing the behaviour, 
social support, cues, habit formation

Tracker+app (Fitbit)

Zhang52 Tracker (Fitbit)+app+social features: social 
support and comparison, cues

None Tracker (Fitbit), app

Patel, 201853 App (Moves) Combined financial incentives, goal 
achievement feedback (SMS/emails): 
goal setting, anticipated regret, material 
incentive+reward, future punishment

App (Moves), goal achievement feedback 
(SMS/emails)

Continued
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supplemental eTable 12). Personalisation features were 
mentioned in 12 studies,38 41 42 44–49 54 55 58 most commonly 
in the form of personalised goal setting,38 42 45 47 58 feed-
back42 44 46 49 54 58 and content41 44 48 (online supplemental 
eTable 13).

Meta-analysis and metaregression
The meta- analysis showed a positive effect on physical activity 
favouring interventions, including smartphone apps or activity 
trackers versus true and active control (SDM 0.350, 95% CI 
0.236 to 0.465, p<0.0001, I2=69%, T2=0.051), corre-
sponding to an increase of 1850 steps per day (95% CI 1247 to 
2457) (figure 3). Despite signs of publication bias in the funnel 
plot, the Duval and Tweedie trim- and- fill method showed the 
adjusted estimate remained significant (online supplemental 
eFigure 1). We conducted seven sensitivity analyses and their 
results were consistent with the main analysis, showing a 

significant positive effect on physical activity favouring inter-
ventions including smartphone apps or activity trackers (online 
supplemental eTable 14). Grouping of studies by outcome type 
did, however, reveal a lower raw difference in means for daily 
step count (21 studies; 753.2, 95% CI 440.4 to 970.7). Forest 
plots of effect sizes ordered by retention rate, study duration 
and risk of bias are shown in online supplemental eFigures 2-4.

Six of 27 subgroup analyses (3 out of 16 planned analyses) 
were statistically significant (online supplemental eFigures 5-10 
and online supplemental eTable 15), namely, studies where the 
intervention had goals and planning (SDM 0.446, 95% CI 0.33 
to 0.562, p<0.0001) or ‘graded tasks’ (SDM 0.512, 95% CI 
0.337 to 0.687, p=0.031) BCTs, text messaging (SDM 0.495, 
95% CI 0.335 to 0.654, p=0.028), personalisation (SDM 0.541, 
95% CI 0.365 to 0.718, p=0.006), studies where the authors 
mentioned conflicts of interest (SDM 0.529, 95% CI 0.388 to 
0.671, p=0.004) and studies mentioning behaviour change 

Author

Characteristics and BCTs of the intervention

Characteristics of the control§Tracker and/or app‡ Other intervention components

Robinson54 Tracker (Fitbit) Emails (+incentive reminders), online 
resources: goal setting, problem solving, action 
planning, instruction on doing the behaviour, 
cues, habit formation, graded tasks, reduce 
negative emotions, framing/reframing

Tracker (Fitbit), emails

Fanning55 App+goal setting, gamification: goal 
setting, review goals, discrepancy between 
behaviour and goal, instruction on doing 
the behaviour, unspecific incentive+reward

Meeting, emails, SMS: goal setting, review 
goals, cues, graded tasks, credible source, 
unspecific reward

App, meeting, emails, SMS, workbook

Patel, 201756 App (Moves) OR tracker (Fitbit) SMS/emails, gamification: goal setting, 
behavioural contract, commitment, social 
support, anticipated regret, graded tasks; 
material incentive+reward; unspecific incentive 
+reward; future punishment

App (Moves) OR tracker (Fitbit), SMS and/
or emails

John57 App (AchieveMint)+Tracker (Fitbit): material 
incentive

Emails (+extra emails about rewards), 
monetary reward: cues, cue signalling reward, 
material reward

App, Fitbit, monetary reward, emails

King58 Social app: problem solving, social support 
and comparison, instruction on doing the 
behaviour, cues

None Dietary app

Melton59 Tracker+app (Jawbone) Emails: cues MyFitnessPal app, emails

Patel,2016 I60 App (Moves) SMS/email/automated voice call, 
individual+team incentives: goal setting, social 
comparison, material incentive+reward, social 
incentive+reward

App (Moves), SMS/email/automated voice 
call

Patel, 2016 II61 App (Moves) Feedback on team performance compared with 
the 75th percentile (email/SMS): goal setting, 
social comparison

App (Moves), feedback on team performance 
compared with the 50th percentile

Walsh62 App (Accupedo- Pro) with widget: 
discrepancy between current behaviour and 
goal, cues

Meeting, leaflet: goal setting, instruction 
on doing the behaviour, info on health 
consequences, demonstration of the behaviour

App, Meeting, leaflet

Cowdery63 Apps (exergame+Moves): unspecific 
incentive+reward, distraction

Emails: social support, instruction on doing the 
behaviour, cues

App (Moves)

Wang64 Tracker+app (Fitbit) SMS, Fitbit website, meeting: goal setting, 
problem solving, cues

Tracker+app/website (Fitbit), meeting

Glynn65 App (Accupedo- Pro) with widget: cues Leaflet, SMS, call: goal- setting, instruction 
on doing the behaviour, info on health 
consequences, cues, credible source

App, leaflet, SMS, call

*Components that distinguish the intervention from the control are underlined.
†Some BCTs were abbreviated for conciseness—check online supplemental materials for complete table.
‡By definition of the inclusion criteria, all mHealth technology components include self- monitoring of behaviour and feedback on behaviour, so these BCTs are not shown in 
intervention columns.
§BCTs for the control group are available in online supplemental file 1.
app, application; BCT, behaviour change technique; info, information; SMS, short message service; SNS, social networking site.

Table 2 Continued
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theories (SDM 0.449, 95% CI 0.312 to 0.587, p=0.018). Other 
subgroup analyses were not statistically significant, including 
analyses of studies where the intervention included an activity 
tracker or just an app, and studies where the tracker or the 
app were the only difference between intervention and control 
groups (online supplemental eTable 15). Heterogeneity was 
partially explained by differences in intervention components 

and populations: studies showing an I2 lower than 40% included 
those providing action planning or human contact, as well as 
studies not including activity trackers or focusing on overweight 
populations (online supplemental eTable 15).

A metaregression model including the moderators that 
showed significance in the previously mentioned subgroup anal-
yses showed an adjusted R2 of 0.57 (table 3). A model including 

Figure 2 Mapping of BCTs in intervention and control groups of included studies. The most common BCTs present in the intervention were from 
the ‘feedback and monitoring’ group (B2, 60 BCTs across all 30 studies), followed by ‘goals and planning’ (B1, 47 BCTs across 22 studies) and ‘reward 
and threat’ (B10, 25 BCTs in 11 studies). BCT, behaviour change technique.
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only the significant variables from the previous model, as well 
as two additional ones—retention rate in the intervention group 
and study duration—showed an adjusted R2 of 0.64, but study 
duration was not significant. A model replacing study duration 
with a dichotomous variable representing studies where the app 
or tracker were the only difference between intervention and 
control showed an adjusted R2 of 0.71, explaining 71% of the 
variance in effectiveness. Overall, text messaging, personalisa-
tion, and retention rate in the intervention were all significantly 
associated with intervention effectiveness, consistently across 
several models.

DISCUSSION
Main findings
This is the first systematic review and meta- analysis of physical 
activity RCTs testing mobile apps or activity trackers that enable 
automated and continuous self- monitoring and feedback, in 
adults without chronic disease. Our findings suggest that inter-
ventions using apps or trackers have small- to- moderate effects 
on physical activity at a mean follow- up of 13 weeks, with an 
average increase of 1850 steps per day, compared with control. 
The available evidence is of low- to- moderate quality according 
to the GRADE system66 and should be interpreted within the 
context of existing heterogeneity and publication bias. However, 
adjusted results accounting for the presence of publication bias 
remained significant.

Interventions including text- messaging and personalisation 
features showed higher effectiveness, with moderate effect sizes. 
Some variables were significantly associated with higher effect 
sizes in subgroup analysis but not in the metaregression: inter-
ventions including BCTs from the goals and planning group or 

graded tasks, studies mentioning behaviour change theories and 
studies mentioning conflicts of interest. Retention rate in the 
intervention was significantly associated with intervention effec-
tiveness. Engagement measures were seldom mentioned and 
varied between studies.

Comparison with existing literature
We found a significant improvement in physical activity with 
apps and trackers, consistent with several previous meta- 
analyses focusing on older mobile technologies.10 11 20 25 28 67–69 
Our meta- analysis included a higher number of RCTs (28 vs an 
average of 17) and showed lower heterogeneity than other meta- 
analyses on mobile technologies (I2 of 69% vs an average of 
75%).10 11 20 22 24–26 28 67–71 The lower heterogeneity may reflect 
the specificity of our inclusion criteria regarding population 
selection (adults without chronic disease) and the intervention 
(smartphone app or activity tracker enabling automated and 
continuous self- monitoring and feedback).

This study is consistent with previous work showing higher 
intervention effectiveness with the use of self- regulation tech-
niques (self- monitoring, feedback and goal setting).9 11 72 Our 
review expands on this prior work by showing that automating 
self- monitoring and feedback does not seem to decrease inter-
vention effectiveness, which could happen due to the lower 
effort and attention required from people to monitor their 
behaviour. In fact, lowering user burden may indeed contribute 
to higher engagement and effectiveness by decreasing the ‘costs’ 
of the intervention (such as the ‘opportunity costs’ of doing 
other valued activities).73 Self- regulation techniques are recog-
nisably important in promoting physical activity,9 11 72 and self- 
regulation is a crucial concept in social cognitive theory, the 

Figure 3 Forest plot of effect sizes and 95% CIs representing the effect of interventions involving mobile applications or activity trackers in 
increasing physical activity (random effects model) with risk of bias assessment. The meta- analysis showed a positive effect on physical activity 
favouring interventions, including smartphone apps or activity trackers (SDM 0.350, 95% CI 0.236 to 0.465, p<0.0001, I2=69%, T2=0.051), 
corresponding to an increase of 1850 steps per day (95% CI 1247 to 2457). Note: size of squares is proportional to study sample size. SDM, 
standardised difference in means.
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most commonly mentioned theory in our study and related 
reviews.24 The higher prevalence of social cognitive theory 
and self- regulation techniques in our review may also explain 
our finding that interventions mentioning (ie, being based on) 
behaviour change theories were more effective, with previous 
meta- analyses suggesting that effectiveness may be more influ-
enced by the specific BCTs used in an intervention than merely 
by the stated use of theory.74

As in other reviews, we found higher effectiveness of inter-
ventions including text messaging,75 suggesting that this long- 
standing delivery mode continues to play an important role in 
behavioural informatics. Text messaging allows the delivery of 
prompts and cues, a BCT associated with behaviour mainte-
nance.76 Future research should explore whether the effect of 

text messages can be explained by their higher intrusiveness 
when compared with smartphone notifications (which can be 
switched off more easily). Additional studies with a longer dura-
tion should also explore the role of different components and 
BCTs in promoting engagement77 and intervention effectiveness 
in the long term.

Our study showed a higher average retention rate than the 
only other meta- analysis reporting this measure (90.5% vs 
80%).11 In our analysis, retention was associated with effective-
ness, whereas study duration was not. Furthermore, four studies 
reported on engagement changes over time, showing progres-
sively lower usage43 44 51 55 despite their short duration—a 
phenomenon known as the law of attrition of health informatics 
interventions.78 Only one of these studies found a statistically 

Table 3 Metaregression

Covariate*‡‡ Coefficient (95% CI) P value R2 analogue

Model 0

  Intercept −0.128 (-0.34 to 0.084) 0.237 0.57

  Goals and planning 0.05 (-0.041 to 0.141) 0.281

  Text messaging 0.365 (0.107 to 0.624) 0.006

  Personalisation 0.252 (0.033 to 0.47) 0.024

  Conflicts of interest 0.072 (-0.222 to 0.366) 0.631

  Graded tasks −0.132 (-0.424 to 0.159) 0.374

  Behaviour change theories 0.24 (-0.004 to 0.484) 0.054

Model 1

  Intercept −1.054 (-1.875 to -0.232) 0.012 0.67

  Text messaging 0.302 (0.112 to 0.492) 0.002

  Personalisation 0.365 (0.16 to 0.57) 0.001

  Number of BCTs in the intervention 0.02 (-0.007 to 0.047) 0.151

  Retention in the intervention 0.011 (0.002 to 0.02) 0.021

Model 2

  Intercept −1.081 (-1.914 to -0.248) 0.011 0.64

  Text messaging 0.334 (0.147 to 0.522) 0.001

  Personalisation 0.427 (0.236 to 0.619) <0.001

  Retention rate in the intervention 0.012 (0.004 to 0.02) 0.006

Model 3

  Intercept −1.058 (-1.925 to -0.19) 0.017 0.64

  Text messaging 0.32 (0.127 to 0.512) 0.001

  Personalisation 0.445 (0.252 to 0.639) <0.001

  Retention rate in the intervention 0.013 (0.004 to 0.022) 0.005

  Study duration −0.007 (-0.019 to 0.004) 0.192

Model 4

  Intercept −2.077 (-3.395 to -0.759) 0.002 0.71

  Text messaging 0.422 (0.222 to 0.623) <0.001

  Personalisation 0.49 (0.293 to 0.686) <0.001

  Retention rate in the intervention 0.022 (0.009 to 0.036) 0.001

  Studies where the app or tracker was the only difference between intervention 
and control

0.374 (-0.005 to 0.752) 0.053

Multivariate metaregression models with statistically significant moderators identified in subgroup analyses, a dichotomous variable representing studies where the app or 
tracker was the only difference between intervention and control, and continuous moderators (number of BCTs in the intervention, retention rate and study duration). Statistically 
significant moderators were kept in successive models. R2 was calculated to determine the proportion of total between- study variance explained by the model.
Italicised numbers correspond to statistically significant p values.
*Goals and planning: studies where the intervention includes BCTs in this category.
†Text messaging: studies where the intervention includes text messaging.
‡Personalisation: studies mentioning personalisation in the intervention.
§Conflicts of interest: studies where the authors mention conflicts of interest.
¶Graded tasks: studies where the intervention included this BCT.
**Behaviour change theories: studies mentioning use of behaviour change theories.
††Reference for all dichotomous variables: remaining studies.
‡‡Retention rate: retention rate in the intervention group (continuous variable).
BCT, behaviour change technique.

 on A
pril 9, 2024 by guest. P

rotected by copyright.
http://bjsm

.bm
j.com

/
B

r J S
ports M

ed: first published as 10.1136/bjsports-2020-102892 on 21 D
ecem

ber 2020. D
ow

nloaded from
 

http://bjsm.bmj.com/


10 of 13 Laranjo L, et al. Br J Sports Med 2021;55:422–432. doi:10.1136/bjsports-2020-102892

Review

significant improvement in physical activity at the end of the 
intervention,55 which suggests the importance of continued 
engagement for effectiveness. It thus remains unclear what the 
right ‘dose’ of app or tracker usage may be, or how it might vary 
for different people and circumstances. Future studies should 
consistently report engagement measures to allow future evalu-
ation of the dose–response relationship between app or tracker 
usage and effectiveness.

Personalisation seems promising in promoting effective 
engagement with behaviour change interventions.73 79 80 
Previous reviews of computer- tailored interventions to promote 
behaviour change have found higher effectiveness of interven-
tions providing tailored content, that is, selecting communication 
content using data- driven decision rules.81 Recent developments 
in artificial intelligence may help leverage the richness of data 
routinely collected by smartphones and build machine learning 
models that optimise intervention content, timing and delivery, 
based on users’ preferences, behavioural patterns, and other indi-
vidual and contextual data.82–84 In the future, mobile physical 
activity interventions may be able to deliver a core set of univer-
sally effective BCTs (eg, self- regulation), with additional tech-
niques and features being personalised. Future research should 
explore users’ perspectives on personalisation and the potential 
downsides resulting from sharing large volumes of personal data 
for that purpose.

Strengths and limitations
Our study has several strengths. Our search strategy included 
peer- reviewed and grey literature. There was substantial agree-
ment in full- text screening. Given that data extraction was 
hampered by incomplete intervention descriptions, with most 
studies not adhering to reporting guidelines, we complemented 
data extraction with information from protocol papers, regis-
trations and emails to authors, as well as known basic features 
of commercial trackers and mobile apps. Data extraction was 
extensive and included coding of BCTs by three trained inves-
tigators, following the BCT taxonomy.8 Several sensitivity 
analyses were consistent with our main results. Our reporting 
of retention and engagement metrics and our analysis of the 

effectiveness of different features within the interventions are 
the most comprehensive to date.

Our review also has some limitations: (1) the search strategy 
was not peer reviewed; (2) data extraction and coding were not 
conducted independently and we could not measure intercoder 
agreement; (3) our coding of personalisation features was based 
on authors’ mention of this term or synonyms; (4) subgroup 
analyses and meta- regression should be interpreted as explor-
atory findings due to the possibility of mass significance and 
uncontrolled confounding; (5) there was considerable hetero-
geneity, which was partially explained by differences in inter-
vention components and population; (6) there were changes 
from the protocol, which are acknowledged in the methods 
and supplements; (7) generalisation of our results to the female 
population is limited, given that only 28% of participants 
were women (due to the inclusion of a few large- scale studies 
targeting only men).

Implications
Interventions using smartphone apps or activity trackers 
seem promising from a clinical and public health perspective, 
promoting a significant step count increase of 1850 steps/day. 
These results are of public health importance according to recent 
evidence showing that any physical activity, regardless of inten-
sity, is associated with lower mortality risk in a dose–response 
manner85 and that an increase of 1700 steps/day is significantly 
associated with lower mortality rates.86

Apps and trackers are becoming ubiquitous in people’s daily 
lives, with smartphone ownership surpassing three- quarters of 
the population and activity trackers being used by one- third of 
adults in the USA and UK.87 88 Despite growing access to these 
technologies, it is important to ensure that the needs of diverse 
groups are being met by closing the digital divide, promoting 
digital health literacy and fostering inclusive design strategies.89 
Wide reach to different population groups is key to guaranteeing 
that improvements in physical activity from these interventions 
generate large effects at the population level, without worsening 
health inequities.

Enhancing the value of these interventions to consumers may 
boost long- term engagement and effectiveness, further increasing 
their impact. Promoting engagement beyond the initial ‘novelty 
phase’ is dependent on user experience, overall utility, and the 
ability to integrate with other devices and services.14 Integrating 
sensor data from apps and trackers with electronic health record 
data are also likely to be useful for patients and clinicians. This is 
now possible with the Apple Health app, which is able to pull in 
health data from healthcare institutions,12 operating as a personal 
health record. Such innovations, adding value to consumers, 
have the potential to spark a new generation of precision public 
health interventions.

The prescription of smartphone apps or activity trackers by 
clinicians to promote physical activity may extend the bene-
fits of these interventions beyond the ‘worried well’ early 
adopters.90 91 Primary care behaviour counselling interventions 
to promote physical activity are known to consistently improve 
important intermediate health outcomes, with evidence of a 
dose–response.92 Given increasing time constraints in clin-
ical practice, a brief intervention during the consultation may 
consist of prescribing an app or tracker, as part of a shared 
decision- making process, to individuals who seem ready to make 
behavioural changes.

What is already known

 ► Waist- worn pedometers can increase physical activity in 
the short term but are burdensome to use. Reviews of apps 
and trackers have shown inconsistent results, with high 
heterogeneity. Existing reviews of apps and trackers have 
not yet focused on healthy adults and on state- of- the- art 
technology, enabling automated and continuous self- 
monitoring and feedback.

What are the new findings

 ► Interventions using contemporary mobile apps or physical 
activity trackers are effective in promoting physical activity, 
with a statistically significant effect size of public health 
relevance. These interventions were more effective when 
including text- messaging or personalisation features. These 
results are valuable to clinicians, who may prescribe apps 
and trackers as part of a shared decision- making process to 
individuals who seem ready to make behavioural changes.
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CONCLUSION
We performed a systematic review and meta- analysis of RCTs 
and found that interventions using smartphone apps or phys-
ical activity trackers have a significant small- to- moderate effect 
in increasing physical activity (1850 steps daily). These inter-
ventions were more effective when including text- messaging or 
personalisation features. Given the wide and increasing reach of 
smartphones, even modest improvements in physical activity can 
produce large effects at the population level. Longer- duration 
studies with more diverse populations should explore long- term 
effectiveness and sustained engagement.
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