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Accelerometer data descriptors  

Modern accelerometers collect raw accelerations (measured in G‟s) at sample frequencies 1 

typically varying from 20 to 100 Hz. As an example, raw data from a thigh-worn 2 

accelerometer is presented in Figure A1. This raw signal is usually filtered and aggregated 3 

to remove the gravitational acceleration and the noise effects on the signal [1]. Examples of 4 

common accelerometer data aggregation metrics are activity counts (brand-specific and 5 

proprietary aggregation metrics), Euclidean Norm Minus One with negative values rounded 6 

to 0 (ENMO), Mean Amplitude Deviation (MAD), Monitor Independent Motion Summary 7 

(MIMS) units, Activity Index (AI0), or steps, among others (hereinafter we refer 8 

collectively to them as „acceleration metrics‟). With regard to MIMS it should be noted that 9 

the claim that it is accelerometer brand independent has so far not been demonstrated, only 10 

sensor from the Actigraph brand were used in the study by John and colleagues [2]. 11 

Further, other metrics like MAD and AI0 can also be brand independent, although this has 12 

not been formally tested yet. MIMS applies a narrow frequency filter by which its potential 13 

lack of sensitivity to differences in the monitor comes at the cost of lower sensitivity to 14 

movements in the low- and high frequency range. In-depth discussions about the influence 15 

that these aggregation metrics on the final estimates have been published elsewhere [1,3–16 

5]; we focus our discussion on the conversion of such acceleration metrics to descriptors at 17 

a day or person level. Given the numerous versions of accelerometer data descriptors 18 

presented in the literature, we decided to focus on those descriptors representative of 19 

physical activity (PA) volume, type, and intensity since they are the most frequently-used 20 

in public health guidelines.  21 

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) Br J Sports Med

 doi: 10.1136/bjsports-2020-103604–9.:10 2021;Br J Sports Med, et al. Migueles JH



 22 

Figure A1. Sample raw accelerometer data recording from a thigh-worn accelerometer. 23 

Accelerometer model: Axivity AX3, sampling frequency: 30 Hz, body attachment site: 24 

thigh; 24h/day recording protocol.  25 

1.1 Average acceleration or steps per day 

Average acceleration over a 24 h period is directly derived from the processed acceleration 26 

and can be used as a proxy for total daily PA-related energy expenditure [6]. This single 27 

estimate indicates the overall activity level and/or the volume of activity. The same can be 28 

obtained from the total number of steps per day, which is also widely used in the field [7,8]. 29 

It is usually expressed in mg or a manufacturer-provided acceleration metric (usually 30 
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counts). Average acceleration usually  has a moderate correlation with PA-related energy 31 

expenditure (r ~ 0.3-0.5), which can be improved by considering body weight, body 32 

composition, and activity type in the models [9,10]. Given that the correlation is not high, it 33 

is often used as a direct measure of movement, without making inferences about PA-related 34 

energy expenditure. 35 

1.2 Time-use behaviours 

Various descriptors quantify the daily time spent in a set of behaviours e.g. time spent in 36 

certain activity intensities (e.g., light, moderate or vigorous PA) or types (e.g., sitting, 37 

standing, walking). In this regard, cut-points represented one of the first developed and 38 

most frequently used methods for assessing the time spent sedentary and in light PA, 39 

moderate PA and vigorous PA using the acceleration metric [11]. The identified linear 40 

association between acceleration and energy expenditure was used to determine cut-points 41 

based on linear absolute metabolic equivalents (METs) thresholds (e.g., sedentary 42 

behaviour (SB), ≤1.5; light PA, >1.5 and <3.0; moderate PA, ≥3.0 and <6.0; vigorous PA, 43 

≥6.0 [12]). Thresholds have been also proposed for walking cadence based on the 44 

estimation of steps per minute [13,14]. Figure A2 graphically represents a cut-point-based 45 

classification of the acceleration recorded during one day without any definition of bouts. 46 

Cut-points can be derived with linear statistical procedures such as linear regression or 47 

receiver operating characteristic (ROC) curves, which assume a linear relationship between 48 

magnitude of acceleration and METs. However, non-linear approaches have also been used. 49 

Otherwise, classification of activity types usually relies on thresholds applied to the device 50 

angle variability, usually from thigh- or wrist-placed accelerometers [15,16]. Similarly, 51 

thresholds  have been applied to acceleration metrics and accelerometer angles to detect 52 
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sleep from the accelerometer signal [15,17,18]. More sophisticated models have used the 53 

acceleration signal to detect whether the activity performed is locomotion or not, and then 54 

applied specific regression models for each activity type (locomotion vs. not locomotion) 55 

[19]. Machine learning (ML) methods have gained momentum to classify both activity 56 

intensities and types from an accelerometer time series [20]. Classifying behaviours or 57 

estimating energy expenditure using a supervised ML approach requires data labelled with 58 

„true‟ intensity or type (as measured with indirect calorimetry, direct observation, heart rate 59 

monitors, among others) [21–25], which is used to iteratively improve 60 

classification/estimation. Alternatively, unsupervised ML methods can be used to define 61 

“states” in the accelerometer signal pattern that can be interpreted as specific behaviours 62 

[26].  63 

 64 
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Figure A2. Graphical representation of cut-point-based metrics without bout-specification. 65 

Accelerometer model: ActiGraph GT3X+, sampling frequency: 100 Hz, body attachment 66 

site: hip; only awake time represented. SB: sedentary behaviour; LPA: light physical 67 

activity; MPA: moderate physical activity; VPA: vigorous physical activity. 68 

Independently of the method used to derive these descriptors, they estimate daily time 69 

devoted to a specific behaviour. Descriptors of time spent in different PA intensities were 70 

first developed to assess objectively the information gained from questionnaire data (the 71 

source of most knowledge on the benefits of PA). Use of these time estimates in recent 72 

research has confirmed the benefits of PA for health and demonstrated stronger effects of 73 

PA than observed with self-report [27]. 74 

1.3 Time-use descriptor (intensity spectrum) 

The intensity spectrum is also quantified as daily time spent in certain categories, so it is a 75 

time-use descriptor. Specifically, time acceleration metric signal over time is classified 76 

based on increasing acceleration bands (e.g., time spent from 0-50, 50-100, 100-150, … 77 

counts or mg or steps per minute). Thus, the intensity spectrum uses a wider range of 78 

narrower equally-sized bands for increased resolution of the data [28]. The definition of the 79 

bin size is arbitrary, might not directly relate to energy expenditure and does not make any 80 

assumption on the behaviour underlying the intensity bin (its purpose is purely descriptive). 81 

It can also be regarded as a discretisation of a functional representation of the intensity 82 

distribution. The idea behind this approach is to avoid exaggerated aggregation of data (into 83 

only 3-4 categories) leading to loss of information. Thus, the number of bands should be 84 

large enough to incorporate all essential features in the accelerometer signal.  85 
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1.4 Intensity gradient 

The intensity gradient describes the negative curvilinear shape of the intensity spectrum 86 

(i.e., the higher the intensity the less time spent at this intensity) [29]. The regression 87 

coefficient from a linear regression of time spent in an intensity bin on intensity, both on a 88 

logarithmic scale, is used as a scalar descriptor of this curvilinear relationship. It is always 89 

negative, reflecting the drop-in time accumulated as intensity increases; a more negative 90 

(lower) gradient reflects a steeper drop with a large proportion of time accumulated at 91 

lower intensities, while a less negative (higher) gradient reflects a shallower drop with time 92 

accumulated at higher intensities (Figure A3). 93 

 94 

Figure A3. Example of intensity gradients from different participants with a similar 95 

average acceleration but discordant intensity distribution (i.e., intensity gradient). 96 

Accelerometer model: ActiGraph GT3X+, sampling frequency: 100 Hz, body attachment 97 

site: non-dominant wrist.  98 
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 99 

1.5 MX metrics - acceleration values corresponding to a set of percentiles  

Time-use descriptors were based on the time accumulated in a series of a priori defined 100 

behaviours/bands. An alternative is to turn this approach on its head and describe the 101 

acceleration intensity distribution in terms of linearized periods of time or fractions of the 102 

24 h day (percentiles). The acceleration for each epoch during the day is ranked in 103 

descending order to obtain the acceleration above which the person‟s most active X 104 

minutes are accumulated [29]. Therefore, instead of reporting the minutes above a given 105 

acceleration threshold, the minimum acceleration achieved for a given duration is reported 106 

(the unit of measurement is often mg or counts). MX, where X refers to the duration, e.g. 107 

M30, refers to the minimum acceleration for the most active 30 min (~percentile 98th) of 108 

the day. The MX metrics focus on a person‟s most active periods of the day, with the active 109 

minutes accumulated in any way across the day. For example, if a child had an M60 value 110 

of 230 mg, the child accumulated 60 min of PA at accelerations (intensity) greater than 230 111 

mg across the day. Similarly, the periods with the lowest recorded activity can be defined. 112 

Similar estimates have been proposed for steps per minute (cadence), being typically 113 

referred to as peak-X min (e.g., peak-30 min) [30]. 114 

 A range of MX metrics covering short to long time durations can be used to aid 115 

interpretation of the volume and intensity of the 24 h profile of physical activity. Using the 116 

MX metrics facilitates interpretation in terms of time spent in indicative activities (e.g., 117 

brisk walking) or above cut-points for different intensities of activity, e.g., moderate-to-118 

vigorous PA (MVPA) or vigorous PA. Plotting a broad range of MX variables on a radar 119 

plot illustrates the intensity and volume of the 24h activity profile (Figure A4), facilitating 120 
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e.g., translation of results from analyses investigating the relative contributions of average 121 

acceleration and intensity gradient to markers of health, and/or comparisons between and 122 

within groups. For example, the M120, M60, M45, M30, M15, M10, M5 and M2 illustrate 123 

the more active periods of the day, while M8h refers to the most active 8 h of the day.  124 

 125 

Figure A4. MX metrics example from two participants with similar average acceleration 126 

but different intensity gradient. Accelerometer model: ActiGraph GT9X, sampling 127 

frequency: 100 Hz, body attachment site: non-dominant wrist. Adapted from Rowlands et 128 

al. [31] with the permission from the publisher. IG: intensity gradient; MVPA: moderate-129 

to-vigorous physical activity; VPA: vigorous physical activity. 130 
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1.6 Acceleration functions 

While the above-mentioned descriptors are represented by scalar numbers, acceleration can 131 

also be described using a function. For example, the intensity gradient (described above) 132 

can be defined by its function instead of only reporting the beta coefficient. Other functions 133 

of interest could be the acceleration over time of the day [32] or the acceleration 134 

distribution (Figure A5) [33]. Acceleration functions seek a more detailed description of 135 

behaviours without making a priori assumptions. For example, while time in light activities 136 

assumes that all of the data between two cut-points (e.g., 0.05 to 0.10 g) relates similarly to 137 

health outcomes, analysis of acceleration functions could detect that a group tend to do 138 

more activities at acceleration less than 0.0 mg or more activities at acceleration above 0.07 139 

g. 140 

 141 

Figure A5. Sample of accelerometer-based distribution as a function of acceleration and 142 

time. Accelerometer model: GeneActiv, sampling frequency: 85.7 Hz, body attachment 143 

site: non-dominant wrist; 24h/day recording protocol. 144 
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1.7 Indicators of movement behaviour patterns and quality 

All the above-mentioned descriptors are time-based (time-use behaviours and intensity 145 

spectrum) or acceleration-based (average acceleration, MX metrics, acceleration functions) 146 

descriptors. That is, they either measure time in a given behaviour or acceleration in a 147 

certain time interval. Other descriptors of movement behaviour quality and patterns can be 148 

obtained thanks to the time-stamped data derived from accelerometers. Time-stamped 149 

accelerometer data can be used to derive certain characteristics of the PA and SB patterns 150 

throughout the day, such as the time accumulation in bouts of PA intensities or types. 151 

Time-stamped data also provides insight on timing of behaviours, domain (school/work or 152 

leisure), and circadian rhythmicity. For example, fragmentation of PA and sleep, sedentary 153 

breaks, intradaily variability, interdaily stability, sleep efficiency, or waking periods after 154 

sleep onset are frequently used in the field to assess the quality and patterns of PA, SB, and 155 

sleep. 156 

Mathematical treatment of descriptors (compositional data analysis) 

This section focuses on mathematical treatments to account for the specific singularities of 157 

the descriptors presented above. Time-use behaviours and the intensity spectrum consist of 158 

a set of components that represent parts of some finite total. This total may be explicit (e.g., 159 

complete 24-hour data) or it may arise through interpretation of the data as proportions 160 

(e.g., waking day data). Therefore, these descriptors can be considered as compositional 161 

data. Each part is called a component and the proportional distribution is called 162 

composition. So, for a composition with i components: 163 

∑                            164 
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Compositional data analysis (CoDA) is an approach to analyse compositional data. Its birth 165 

is often attributed to Pearson‟s paper on spurious forms of correlation in ratio data [34]. 166 

Arguably the father of CoDA is John Aitchison, who developed comprehensive statistical 167 

frameworks to deal with compositional data [35]. CoDA is an established branch of 168 

statistics and has been used in many fields of research such as geosciences, nutrition, the 169 

study of the microbiome and gene sequencing. In the last five years CoDA has been applied 170 

in the field  of „physical behaviour epidemiology‟ to study the association between daily 171 

time use and health (Figure A6) [36–38]. 172 
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 173 

Figure A6. Overall number of publications using accelerometer-determined PA (panel A) 174 

and number of publications using compositional data transformations from inception to 175 

December 31st, 2019. Search syntax introduced in the Web of Science: Panel A: 176 

((((("physical activity")) OR "sedentary")) AND ((acceleromet*) OR actigraph*)); Panel B: 177 

((((("physical activity")) OR "sedentary")) AND ((acceleromet*) OR actigraph*) AND 178 

("compositional data analysis")). 179 
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1.8 Compositional data transformation 

Time-use descriptors of physical behaviours are by nature compositional when they 180 

describe a time or energy budget (Figure A7). Hence the sum of time spent in each 181 

behaviour will be the period of interest (24 hours, waking period, week, wear time) and the 182 

proportions will sum to 100% of this period. In this example, the composition is made of 183 

four components over 24 hours: sleep, SB, light PA and MVPA. 184 

                               
This is also true if we consider part of the day, such as the composition of movement 185 

behaviours during the waking day. Though waking hours are typically not fixed, we can 186 

still carry out a compositional data analysis of the proportions. 187 

                            

 188 

Figure A7. Visualization of the compositional nature of physical behaviour data. SB: 189 

sedentary behaviour; LPA: light physical activity; MVPA: moderate-to-vigorous physical 190 

activity. 191 
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A composition can have an unlimited number of parts that can be defined by intensity 192 

band,activity type, context information or a combination of those, provided they are 193 

mutually exclusive. As a consequence of the fact they describe mutually exclusive 194 

components of a time or energy budget, each part only contains relative information rather 195 

than an absolute value and, then, the interpretation of compositional data is in terms of 196 

relative time spent in the different behaviours. If the data is regarded as a composition; 197 

mathematical transformation of the data is required prior to introducing the variables in a 198 

statistical model. For some applications, the absolute time may be important, in which case 199 

it would not be appropriate to apply the compositional transformation.  200 

Compositional data transformations are simple and rely on logarithmic transformations. 201 

The purpose of this transformation is to resolve the difficulties around co-dependency and 202 

spurious correlation associated with the compositional nature of these descriptors. 203 

Statistical models can, therefore, be adjusted for all physical behaviour components without 204 

incurring perfect collinearity. Specifically, the data transformations that have been used so 205 

far in „physical behaviour epidemiology‟ are the centred log ratio (CLR) [39,40] and the 206 

isometric-log ratio (ILR) [37,41–43]. Using the CLR method, each component is centred 207 

according to the mean logarithm of all the components [35]. The CLR-transformation is 208 

mathematically expressed as: 209 

         √∏         with i indicating each component  210 

The sum of the D (number of components) CLR-transformed variables is 0. This fixed sum 211 

means they are singular, and cannot be used in regression models. However, we can apply 212 

an additional transformation to the CLR components to obtain a D-1 dimensional space 213 
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without this constraint. This is referred to as the ILR-transformation when the new space 214 

uses an orthonormal basis. There are multiple such bases (and hence ILR transformations) 215 

however the most common approach in physical behaviour epidemiology research is shown 216 

below (e.g., SB, light PA, MVPA and sleep): 217 

    (   √      (              )  ⁄     √       (          )  ⁄     √             ) (1) 218 

      (   √       (             )  ⁄     √        (        )  ⁄     √           ) (2) 219 

      (   √        (            )  ⁄     √         (      )  ⁄     √         ) (3) 220 

       (   √         (           )  ⁄     √      (        )  ⁄     √           ) (4) 221 

Thus, the ILR produces a set of coordinates for each component (i.e., z1, z2 and z3 in each 222 

component of the example above) that should be introduced together as covariates in any 223 

statistical model (see section 2.3 for considerations on the statistical model selection). The 224 

main difficulty associated with these transformations is in interpreting the results; this is a 225 

problem similar to (for example) in linear regression when a variable is log-transformed. 226 

For compositional data, a solution is to find an appropriate graphical representation of the 227 

results, keeping in mind the co-dependence of the parts and using model predictions rather 228 

than deriving the estimate directly from model coefficients. Another difficulty arising from 229 

these mathematical transformations is related to having zeros or values close to zero in any 230 

of the components. This can happen in certain populations which may not perform vigorous 231 

PA or even MVPA. Considering very low values in a composition could lead to spurious 232 
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correlations [44], usually, these values are either ignored in the analysis or imputed to 233 

stabilize the models [37].  234 

Statistical modelling 

The third and last step of the analytical process relates to the decisions on how to model the 235 

associations between the selected descriptor(s) (with or without mathematical 236 

transformations) and health.  As far back as the 1950‟s [45,46], many studies have 237 

investigated the epidemiological associations of physical behaviours with health outcomes. 238 

The use of accelerometers confirmed some of these associations, and allowed a better 239 

characterisation of the dose-response curve overcoming the cognitive biases of self-reports. 240 

However, most studies have solely focused on basic descriptors of one behaviour in 241 

isolation (e.g., MVPA). Out of the 11,765 publications identified in a search in the Web of 242 

Science on physical activity and accelerometers (Figure A6, Panel A), only 125 studies 243 

explored the interdependencies among physical behaviours using isotemporal substitution 244 

models, multivariate pattern analysis or functional data analysis (Figure A8) [47]. This 245 

consensus group believes that now is the right time to move to more detailed and 246 

informative studies on the combined effects and interactions across physical behaviours on 247 

health outcomes.  248 
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 249 

Figure A8. Number of publications using some of the approaches described in the present 250 

document from inception to December 31st, 2019. Search syntax introduced in the Web of 251 

Science: isotemporal substitution models: ((((("physical activity")) OR "sedentary")) AND 252 

((acceleromet*) OR actigraph*) AND ("isotemporal substitution")); multivariate pattern 253 

analysis: ((((("physical activity")) OR "sedentary")) AND ((acceleromet*) OR actigraph*) 254 

AND ("Physical activity signature" OR "multivariate pattern analysis")); functional data 255 

analysis: ((((("physical activity")) OR "sedentary")) AND ((acceleromet*) OR actigraph*) 256 

AND ("Physical activity signature" OR "functional data analysis")). 257 

1.9 Linear regression modelling  

Linear regression is the most frequently used statistical model in the field, often including 258 

the physical behaviour descriptor as a continuous exposure variable in a linear, logistic or 259 

Cox regression (depending on the outcome of interest). Linear regression models are 260 
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interpreted in terms of the (theoretical) effect of increasing the explanatory variable on the 261 

outcome, under a linear relationship. Standard linear regression models are usually adjusted 262 

for the covariates that could influence the association of interest. Highly correlated 263 

explanatory variables result in multicollinearity, which is a phenomenon in which 264 

redundant information carried by predictors leads to erratic estimation of the models [48]. 265 

Linear regression models can also be used with compositional ILR-transformed descriptors, 266 

which may eliminate that part of the collinearity which arises from the fixed sum (or 267 

closure) constraint [37,38]. In this case, the model coefficients are interpreted in terms of 268 

time replacements across behaviours. For example, the estimate for the z1 coordinate of the 269 

zSB equation presented above represents the effect of increasing SB while proportionally 270 

reducing the time in light PA, MVPA and sleep. The dose-response association between a 271 

specific behaviour and the health outcome is assumed to be logarithmic (curvilinear) using 272 

compositionally-transformed descriptors. Likewise, the regression model predictions (using 273 

compositional data) can be used to estimate the time replacement between pairs of 274 

behaviours (e.g., reallocating time from SB to MVPA). This results in a similar 275 

interpretation to the isotemporal substitution models presented in the section 2.3.2. When 276 

examining longitudinal associations, advanced regression models (e.g., survival analysis 277 

using Cox regression) may be used with either absolute descriptors [27,49,50] or 278 

compositional ILR-transformed descriptors [42]. 279 

1.10 Isotemporal substitution models  

The isotemporal substitution modelling framework considers potential outcomes of 280 

increasing one behaviour at the expense of another and whether the strength of the 281 

association is dependent on the behaviour being displaced. Isotemporal substitution models 282 
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are linear regressions in which all-but-one of the time-use behaviours are introduced as the 283 

exposure (together with the pertinent covariates) and the health outcome is the dependent 284 

variable. These models examine the estimated effects of replacing time spent in one 285 

behaviour (the missing behaviour in the model) with an equal amount of time spent in 286 

another, while keeping monitor wear time constant. They do so by dropping the behaviour 287 

of interest from the model (otherwise, the model would suffer from perfect collinearity). 288 

The linear effects of the pair-wise reallocations are then estimated from the model 289 

coefficients. Similar interpretations of time replacement between pairs of behaviours can be 290 

obtained from applying linear regression over compositional data (see section 2.3.1). 291 

1.11 Multivariate pattern analysis and other dimension reduction models 

Multivariate pattern analysis can handle completely collinear explanatory variables by 292 

combining the data into orthogonal latent variables [51]. Thereby, this method tackles 293 

collinearity as a dimension reduction problem, rather than a data transformation (as CoDA 294 

does). Multivariate pattern analysis is especially well-suited to analyse a wide range of 295 

collinear descriptors, such as the intensity spectrum, without requiring any data 296 

transformation [28,52], although transformations can be done to make distributions within 297 

bands more normal and linearly associated with the outcome. Another important feature is 298 

that the models are optimized for predictive ability by Monte-Carlo resampling whereby 299 

half of the data are repeatedly used for modelling and half for prediction [53]. In this way, 300 

the optimal number of latent variables can be determined and only relevant features in the 301 

descriptor retained.  302 

Multivariate pattern analysis uses partial least squares (PLS) regression modelling [51], or 303 

other latent-variable regression models [54], to determine the multivariate association 304 
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pattern. PLS regression decomposes the explanatory variables into orthogonal linear 305 

combinations (PLS components), while simultaneously maximizing the covariance with the 306 

outcome variable. Similar procedures to reduce the data can be observed in factor analysis, 307 

principal component analysis, or JIVE models. Multivariate pattern analysis differs from 308 

these others by creating components that maximize the covariation with the outcome, not 309 

internally among the explanatory variables. JIVE models seek to maximize the variance 310 

explained across explanatory variables assuming that they come from different dimensions 311 

(e.g., PA, sleep, and circadian rhythms) and improving the within and between dimension 312 

representation [55]. The procedure for obtaining the multivariate patterns is completely 313 

data-driven, with no assumptions on variable distributions or degree of collinearity among 314 

variables. Selectivity ratios are calculated to express and rank each single explanatory 315 

variables‟ association with the outcome [56,57]. The selectivity ratio represents each 316 

explanatory variable‟s ratio of explained to residual variance in relation to the outcome 317 

(Figure A9). By replacing residual variance with total variance in the denominator, a 318 

straight-forward measure of explained variance can be obtained [58]. Multivariate pattern 319 

analysis has been applied with time-use descriptors and intensity spectrum in both their 320 

absolute scale and with the compositional CLR-transformation [39]. Since multivariate 321 

pattern analysis can handle singular data (e.g., CLR-transformed data), the ILR-322 

transformation is not necessary if modelling compositional data.  323 
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 324 

Figure A9. Multivariate pattern analysis example. Accelerometer model: ActiGraph 325 

GT3X+, sampling frequency: 30 Hz, body attachment site: right hip; awake time recording 326 

protocol. Selectivity ratio represents the explained-to-total outcome variance ratio. Adapted 327 

from Aadland et al. [39] with permission from the publisher. 328 

1.12 Functional data analysis 

Functional data analysis is an extension of linear regression analysis where the exposure or 329 

the outcome (or both) is a function instead of a scalar [59–61]. In physical behaviour 330 

epidemiology, the rationale of functional data analysis in the context of accelerometer data 331 

comes from the availability of moment-by-moment acceleration data allowing the use of 332 

the entire range of accelerations, whatever the aggregated metric used (e.g., counts, ENMO, 333 
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MAD) [62,63]. The acceleration functions described in section 2.1.6 can be used in 334 

functional data analysis. A first step often consists in smoothing the function of interest so 335 

that the smoothed function can then be used in functional data analysis, although some 336 

approaches do not smooth the data at subject level and rather pool the data across subjects 337 

to avoid the loss of information from the accelerometer signal. For example, when the 338 

interest is in the distribution of acceleration over time of the day, one can reduce data into 339 

10 minute epochs as the objective is to assess when individuals are more or less active at 340 

each time of the day [64]. When the function of interest is the acceleration density 341 

distribution, Gaussian Kernel smoothing methods can be used (Figure A10) [65]. In that 342 

case, careful attention should be given to the number and place of nodes for acceleration 343 

values: a higher number of nodes should be present in the acceleration range where most of 344 

the time is spent. Then, the smoothed function of interest can be used for further analysis as 345 

an outcome variable (Function-on-scalar analysis), an exposure (Scalar-on-function 346 

analysis), or both (Function-on-function analysis) using functional data analysis regression 347 

techniques. 348 

 349 
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Figure A10. Smooth mean and interquartile acceleration density function. Red curve 350 

represents the mean density function of the study population and the grey area the 351 

interquartile range. 352 

1.13 Machine learning for epidemiological analysis 

ML methods provide a broad range of techniques to identify patterns in data. Although it 353 

has been increasingly used to derive descriptors from raw accelerometer data [20],  ML has 354 

rarely been applied to the study of the associations of accelerometer data descriptors 355 

(examples of ML for health association analysis using physical behaviour data include 356 

[66,67]). As ML methods typically emphasise prediction or data reduction, they are most 357 

often relevant for hypothesis generation and data exploration. While there is no clear 358 

distinction between conventional statistical methods and ML, there is typically a different 359 

emphasis, and so they can be difficult to apply directly to problems requiring statistical 360 

inference. Bi et al. discuss possible epidemiologic applications of a wide range of machine 361 

learning methods in detail [68]. Examples of ML methods which could be applied to health 362 

association analysis using accelerometer data include Decision Trees/ Random Forests, 363 

Support Vector Machines and Neural Networks. 364 
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