Supplementary table S1 Characteristics of the study included in the meta-analysis on physical activity and cancer mortality

	Author (year) \& Country ${ }^{\text {ref }}$	Study name	Gender	Age(y) at recruitment	No. death	No. case	No. cohort	Median follow-up(years or person-years)	Cancer type	$\begin{aligned} & \hline \begin{array}{l} \text { Type of } \\ \text { activity } \end{array} \\ & \hline \end{aligned}$	Main results	Adjustment factors
1	$\begin{aligned} & \text { Arraiz (1992) } \\ & \text { Canada }^{1} \end{aligned}$	A population-ba sed cohort study	Both	30-69	229		12218	7	All	Total physical activity	Very active: 1.00 Active: 1.40 (0.80-2.30) Moderate: 0.80 (0.40-1.40) Inactive: 1.20 ($0.70-1.90$)	Age, sex, smoking and alcohol consumption
2	$\begin{aligned} & \text { Kampert (1996) } \\ & \text { USA }{ }_{2} \end{aligned}$	A prospective observational study	Both	20-88	223		25341	8	All	Recreational physical activity	$\begin{aligned} & \text { (Mean } \pm \text { SD)s } \\ & \text { Male } \\ & \text { Q1(622 } \pm 151 \mathrm{~s}): 1.00 \\ & \text { Q2(817 } \pm 125 \mathrm{~s}): 0.55(0.44,0.7) \\ & \text { Q3(950 } \pm 122 \mathrm{~s}): 0.61(0.48,0.78) \\ & \text { Q4(1097 } \pm 133 \mathrm{~s}): 0.52(0.41,0.66) \\ & \text { Q5(1407 } \pm 189 \mathrm{~s}): 0.49(0.37,0.64) \\ & \text { Female } \\ & \text { Q1(377 } \pm 109 \mathrm{~s}): 1.00 \\ & \text { Q2(536 } \pm 107 \mathrm{~s}): 0.53(0.30,0.95) \\ & \text { Q3(628 } \pm 116 \mathrm{~s}): 0.56(0.31,1.01) \\ & \text { Q4(763 } \pm 129 \mathrm{~s}): 0.22(0.10,0.49) \\ & \text { Q5(1040 } \pm 215 \mathrm{~s}): 0.37(0.19,0.72) \end{aligned}$	Baseline differences in age, examination year, cigarette smoking, chronic illnesses, and electrocardiogram abnormalities
3 8	Rosengren (1997) Sweden ${ }^{3}$	The Multifactor Primary Prevention Study	Male	47-55	723		7142	20	All	Recreational physical activity	Sedentary, moderately active, regular exercise, athletic sports. Two most active groups compared to the sedentary group: $0.78(0.62,0.99)$	Age, serum cholesterol. Smoking, alcohol abuse, and manual versus nonmanual occupational class
4	$\operatorname{Smith}^{\text {STK }^{4}}$	The Whitehall Study	Male	40-64	832		6702	25	All	Recreational physical activity	Inactive: 1.28 (1.1, 1.6) Moderately active: $1.13(0.9,1.4)$ Active: 1.00 Active group compared to inactive group with crude HR: 0.65 (0.53 , 0.80)	Age, employment grade, BMI, smoking
5	$\begin{aligned} & \text { Batty (2001) } \\ & \text { UK }^{5} \end{aligned}$	The Whitehall Study	Male	40-64	1151		18403	25	All	Travel activity Walking or bicycling on the way to work	```(Min/day) 0-9:1.00 10-19: 1.05 (0.90, 1,20) 20: 0.99 (0.90, 1.10)```	Age, employment grade, BMI, smoking,
6	$\begin{aligned} & \text { Kilander (2001) } \\ & \text { Sweden }^{6} \end{aligned}$	$\begin{array}{lr}\text { A } & \text { cohort } \\ \text { study } & \text { in } \\ \text { Sweden } & \end{array}$	Male	48.6-51.1	216		2301	25.7	All	Recreational physical activity	Low: $1.09(0.73,1.64)$ Medium: $0.96(0.70,1.33)$ High: 1.00	Age, body height, diastolic blood pressure, systolic blood pressure, b-glucose, BMI, s-triglycerides, s-cholesterol

7	Lee (2002) Korea ${ }^{7}$	The Korea Medical Insurance Corporation (KMIC)	Male	35-64	883	452645	5	Lung cancer	Recreational physical activity	$\begin{aligned} & \text { No: } 1.00 \\ & \text { Yes: } 0.80(0.70,0.90) \end{aligned}$	Age
8	$\begin{aligned} & \text { Lee (2003) } \\ & \text { USA }^{8} \end{aligned}$	The College Alumni Health Study	Both	47.1 (mean age)	212	32687	5	Pancreatic cancer	Recreational physical activity	$\begin{aligned} & (\mathrm{KJ} / \mathrm{wk}) \\ & \text { <2100: } 1.00 \\ & \text { 2100-4199: } 0.98(0.65,1.49) \\ & \text { 4200-10499: } 0.92(0.62,1.35) \\ & \geq 10500: 1.31(0.69,1.92) \end{aligned}$	Age (single years), sex, cigarette smoking, diabetes mellitus
9	$\begin{aligned} & \mathrm{Hu}(2005) \\ & \text { Finland }{ }^{9} \end{aligned}$	Prospective follow-up study	Both	25-64	7394	47212	17.7	All	Total physical activity	Male Low: 1.00 Moderate: $0.83(0.69,1.00)$ High: $0.79(0.65,0.96)$ Female Low: 1.00 Moderate: $0.85(0.71,1.01)$ High: 0.73 ($0.60,0.88$)	Age, study year, education, smoking status, systolic blood pressure, cholesterol, BMI
10	$\begin{aligned} & \text { Nilson (2006) } \\ & \text { Norway }{ }^{10} \end{aligned}$	$\begin{aligned} & \text { The HUNT } \\ & \text { study } \end{aligned}$	Male	41-100	276	29110	17.5	Prostate cancer	Recreational physical activity	No: 1.00 Low: 0.71 ($0.50,1.02$) Medium: $0.81(0.60,1.10)$ High: 0.67 ($0.78,0.94$)	Age, BMI, marital status , education, alcohol consumption, smoking status
11	Schnohr (2006) Denmark ${ }^{11}$	The Copenhagen City Heart Study	Both	20-93	632	4894	20	All	Recreational physical activity	$\begin{aligned} & (\mathrm{h} / \mathrm{wk}) \\ & \quad<2: 1.00 \\ & \text { 2-4: } 0.77(0.61-0.97) \\ & \text { >4: } 0.73(0.56-0.95) \end{aligned}$	Age, sex, smoking, total-cholesterol, high-density, lipoprotein-cholesterol, systolic blood pressure/antihypertensive drugs, diabetes, alcohol consumption, body mass index, education, income and forced respiratory, volume in the first second of expiration (FEV1), measured at the second examination
12	Huxley (2007) Asia-Pacific region ${ }^{12}$	The Asia Pacific Cohort Studies Collaboration (APCSC)	Both	47	751	539201	6.8	Colorectal cancer	Total physical activity	No: 1.00 Yes: $0.77(0.60,0.98)$	Smoking, diabetes, and alcohol
13	$\begin{aligned} & \operatorname{Lin}(2007) \\ & \text { Japan }^{13} \end{aligned}$	The Japanese Collaborative Cohort study for Evaluation	Both	40-79	402	110792	13	Pancreatic cancer	Recreational physical activity	$\begin{aligned} & \text { Walking (min/day) } \\ & \text { Male } \\ & <30: 1.00 \\ & \text { 30: } 0.84(0.46,1.50) \end{aligned}$	Age, BMI, cigarette smoking

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 17 \& Orsini (2009) Sweden ${ }^{17}$ \& A population-ba sed cohort of Swedish men \& Male \& 45-79 \& 199 \& 45887 \& 9

8.9 \& Prostate cancer \& Total physical activity \& $$
\begin{aligned}
& \text { (MET-h/wk) } \\
& \text { 37(<39): } 1.00 \\
& \text { 41(39-42.2): } 0.96(0.53-1.75) \\
& \text { 44(42.5-46): } 1.02(0.55-1.87) \\
& \text { 48(>46): } 0.98(0.53-1.83)
\end{aligned}
$$ \& Age, waist - hip ratio, height, diabetes, alcohol consumption, smoking status, years of education, total energy intake, consumption of dairy product and red meat and parental history with respect to prostate cancer. \\

\hline 18 \& \[
$$
\begin{aligned}
& \text { Stevens (2009) } \\
& \text { UK }^{18}
\end{aligned}
$$

\] \& | Million |
| :--- |
| Women Study | \& Female \& 55.9 ± 4.5 \& 1710 \& \[

$$
\begin{aligned}
& 130000 \\
& 0
\end{aligned}
$$

\] \& 8.9 \& Pancreatic cancer \& Recreational physical activity \& \[

$$
\begin{gathered}
(\text { Time } / \mathrm{wk}) \\
<1: 1.0 \\
1: 0.87 \\
\text { 2-3: } 1.03 \\
\geq 4: 1.01
\end{gathered}
$$
\] \& Age, region, socioeconomic status, smoking, BMI and height \\

\hline 19 \& | Autenrieth |
| :--- |
| (2011) |
| Germany | \& The second MONICA/K ORA Augsburg survey \& Both \& 25-74 \& 326 \& 4672 \& 17.8 \& All \& Recreational physical activity \& \[

$$
\begin{aligned}
& \text { (MET-h/wk) } \\
& \quad \text { 0: } 1.00 \\
& \text { <3: } 0.58(0.42-0.80) \\
& \text { 3-6: } 0.56(0.40-0.77) \\
& >6: 0.36(0.23-0.59)
\end{aligned}
$$
\] \& Sex, BMI, systolic blood pressure, total-to-HDL cholesterol ratio, education, smoking status, alcohol consumption, myocardial infarction, stroke, diabetes, cancer, self-reported limited physical activity due to health problems, and other domains of physical activity \\

\hline 20 \& $$
\begin{aligned}
& \text { Batty (2011) } \\
& \text { UK }^{20}
\end{aligned}
$$ \& The Whitehall study \& Male \& 40-69 \& 578 \& 17934 \& 40 \& Prostate cancer \& Recreational physical activity \& Recreational physical activity

Low: 1.00
Middle: $1.24(0.88-1.73)$
High: $1.12(0.76-1.64)$
Travel activity (Min/day)
0-9: 1.00
10-19: $1.24(0.88-1.73)$
20-29: $1.26(0.92-1.72)$
30-39: $1.3(0.86-1.97)$
$\geq 40: 1.65(0.87-3.15)$ \& Age at risk, BMI, plasma cholesterol, socio-economic status, diabetes/blood glucose,marital status, FEV1, height, smoking, and diastolic and systolic blood pressure \\

\hline 21 \& | Borch (2011) |
| :--- |
| Norway ${ }^{21}$ | \& | The |
| :--- |
| Norwegian |
| Women and Cancer (NOWAC) Study | \& Female \& 30-70 \& 1584 \& 66136 \& 12 \& All \& Recreational physical activity \& Ten levels

1: $1.32(0.96-1.81)$
2: $1.48(1.19-1.84)$
3: $1.26(1.06-1.5)$
4: $1.07(0.91-1.25)$
5: 1.00
6: $0.88(0.75-1.03)$
7: $0.90(0.76-1.07)$
8: $0.92(0.74-1.13)$ \& BMI, height, smoking status, years of smoking, amount of smoking, alcohol intake, menopausal status, age at first birth, parity, hormone therapy use, cardiovascular disease diabetes mellitus and \\
\hline
\end{tabular}

study (EPIC)

China Men's Health
Study
(SMHS)

40-74
4
1053
$\begin{array}{lll} & 61477 & 5.48\end{array}$

All
都Total physical activity

(MET-h/wk)

No regular exercise: 1.00 <13.9: 0.81 (0.68-0.96) ≥ 13.9 : 0.81 (0.86-0.94)

Breast cancer \quad Running and Walking	$($ MET- $\mathrm{h} / \mathrm{wk})$	
		$<13.9: 1.00$
		$7.5-12.5: 0.47(0.21-0.97)$
	$\geq 12.5: 0.61(0.38-1.01)$	

All

Recreat activity

menopause status and all WCRF/AICR components were mutually adjusted. Age, educational level, income, occupation, alcohol consumption, pack-years of smoking, daily intake of energy, re daily intake of ene meat, fruits, and activity other than activity other than exercise, body mass index, and history of cardiovascular disease, diabetes, hypertension, chronic liver disease, o pulmonary disease
Follow-up age, race, menopause, oral contraceptive and estrogen/progesterone use, BMI
Age, education level,
Hong Kong ladder, tota energy intake, DQI,
smoking, and alcohol use, BMI, frailty index, living arrangement, and level of leisure time physical activity/housework

Inous/muscle-conditioning
Inactive: 1.00
Active: 0.89 (0.57-1.39) Female

Light
Inactive: 1.00
Active: 0.70 (0.41-1.21)

Moderate

Inactive: 1.00
Active: 0.38 (0.14-1.07)
Strenous/muscle-conditioning
Inactive: 1.00
Inactive: 1.00
Active: 0.93 (0.29-2.95)

All cancers

Never: 1.00

<1: 0.95 (0.89-1.01)
1-3: 0.93 (0.88-0.98
4-7: 0.90 (0.85-0.95)
7: 0.89 (0.84-0.94)
Lymphocytic leukemia Never: 1.00
<1: 0.96 (0.48-1.89)
1-3: 1.3 (0.76-2.21)
4-7: 0.65 (0.35-1.19)
7-7:0.65 (0.35-1.19) Colon Never: 1.00
Never: 1.00
<1: 0.80 (0.63-1.01)
1-3:0.85 (0.70-1.02) 1-3: $0.85(0.70-1.02)$ >7: 0.70 (0.57-0.85) Liver
Never: 1.00
1: 0.79 (0.54-1.14
1-3: 0.90 (0.68-1.21) 4-7: 0.64 (0.47-0.88) $>7: 0.71$ (0.52-0.98) Oral cavity and pharynx Never: 1.00
<1: 0.83 (0.48-1.44)
1-3: 0.79 (0.51-1.24
4-7: 0.76 (0.48-1.21)
$>7: 0.75$ (0.47-1.20)
Non-Hodgkins lymphoma

$$
\text { Never: } 1.00
$$

<1: 1.19 (0.90-1.58)
1-3: 0.76 (0.58-0.98)
4-7: 0.83 (0.64-1.06) >7: $0.80(0.62-1.06)$ Esophagus
Never: 1.00
<1:0.92 (0.65-1 29)
1-3:0.91 (0.69-1.20)
4-7:0.96 (0.73-1.27)
>7: 0.80 (0.60-1.08)

Myeloma

Never: 1.00
<1: 0.75 (0.49-1.14)
1-3: 0.56 (0.40-0.81 4-7: 0.77 (0.55-1.07)

7: 0,84 (0.77-0.92

Lung
Never: 1.00
<1: 0.85 (0.76-0.95)
-3: 0.92 (0.84-1.00)
-7: 0.82 (0.75-0.90)
7: 0.84 (0.77-0.92)
Myeloid/monocytic
Never: 1.00
<1: 1.27 (0.86-1.86)
<1: 1.27 (0.86-1.86)
1-3: 0.85 (0.60-1.21) 4-7: 1.10 (0.79-1.54) 7: 0.86 (0.60-1.22) Stomach
Never: 1.00
1: 1.00 (0.65-1.56)
1-3: 0.99 (0.69-1.42)
4-7: 0.97 (0.67-1.40
$>7: 0.90$ (0.61-1.31)
Ovarian
Never: 1.00
<1: 0.92 (0.62-1.36)
1-3: 0.83 (0.59-1.150
4-7: 0.87 (0.63-1.21
$>7: 0.91$ (0.65-1.31)
Prostate
Never: 1.00
<1: 0.97 (0.69-1.37)
1-3: 0.79 (0.59-1.06
4-7: 1.03 (0.78-1.37) $>7: 0.93$ (0.69-1.240 Bladder
Never: 1.00
Never: 1.00
<1: $1.25(0.84-1.86)$ 1-3: 0.97 (0.68-1.38) -7: 0.95 (0.67-1.36) Breast
Never: 1.00
<1: 1.21 (0.82-1.80)
1-3:0.92 (0.65-1.29)
4-7: 0.97 (0.68-1.37)
>7: 1.08 (0.76-1.53)
Brain
Never: 1.00
<1: 1.14 (0.78-1.66)

Never: 100
1: 1.52 (0.85-2.69)
-3: 0.79 (0.45-1.38)
4-7: 1.13 (0.66-1.93)
>7. 1.21 (0.70-2.08)
Pancreas
Never: 1.00
1:1.35 (1.07-1.70)
<1: $1.35(1.07-1.70)$
1-3: $1.14(0.80-1.64)$
1-3: 1.14 (0.80-1.64)
7:1.25 (1.03-1.53)
Kidney
Never: 1.00
<1: 1.10 (0.71-1.70)
1-3: 1.14 (0.80-1.64)
4-7: 1.47 (1.03-2.09)
$>7: 1.42$ (0.98-2.03)

Rectum

Never: 1.00
<1: 1.26 (0.64-2.48)
1-3: 1.57 (0.90-2.71)
4-7: 1.27 (0.72-2.25)
>7: 1.63 (0.93-2.84)
Recreational physical <30 min/day or <5 day/wk or <7 of Age, sex, education, the previous 10 years of moderate or fast walking and/or moderate or strenuous activity: 1.00
>30 minutes/day of moderate or fast 30 minutes/day of moderate or valking and/or moderate renuous activity on at 10 days/ in least 7 of the past 10 years: 0.91 0.79-1.04)
race/ethnicity, marital status, PSA screening in previous 2 years, colonoscopy or sigmoidoscopy in previous 10 years, cancer diagnosed in first-degree relatives, non-steroidal anti-inflammatory medication and regular or low-dose aspirin use ock-years of smoking pack-years of smok average daily energy average daily energy reproductive factors were included for women, including age at

None: 1.00

A few time/year: 1.10(0.60-2.00)
A few time/month:1.20(0.40-2.60)
1 time/wk: 0.70 (0.30-1.70)
>1 time/wk: 1.00 (0.50-1.90)
Exercise
None: 1.00
A few time/year: 1.10 (0.60-2.00)
A few time/month: 1.20 (0.40-2.60)
1 time/wk: 0.70 (0.30-1.70)
>1 time/wk: 1.00 (0.50-3.20)
Jogging
None: 1.00
A few time/year: 1.50 (0. 50-4 10)
A few time/month: 1.90 (0.70-5.40)
1 time/wk: 1.80 (0.40-7.50)
>1 time/wk: 1.80 (0.40-7.50)
Swimming
None: 1.00
A few time/year: 1.20 (0.60-2.400
A few time/month: 1.00 (0.50-2.00)
1 time/wk: 1.20 (0.70-2.30)
>1 time/wk: 0.90 (0.50-1.50)
Gardening
None: 1.00
A few time/year: 1.00 (0.60-1.80)
A few time/month: 1.60 (0.90-2.70)
1 time/wk: 1.00 (0.60-1.70)
>1 time/wk: 0.80 (0.50-1.40)
Breast cancer
MET-h/wk)
Post-diagnosi
<3: 1.00
3-8.9: 0.80 (0.60-1.06)
9-14.9: 0.50 (0.31-0.82)
15-23.9:0.56 (0.38-0.84)
15-23.9: 0.56 (0.38-0.84)
$\geq 24.0 .60$ (0.40-0.89)
<3:1.00
<3: 1.00
3-8.9: 0.65 (0.43-0.97)
9-14.9: 0.35 (0.18-0.68)
15-23.9: 0.63 (0.39-1.04
$\geq 24: 0.61$ ($0.37-0.99$)
Pre-diagnosis (BMI 25)
<3: 1.00
3-8.9: 1.01 (0.66-1.55)
9-14.9: 0.81 (0.38-1.72)

Age, interval between diagnosis and physical activity assessment, body mass index, menopasal status and hormone therapy use, age at first birth and paity, al
contraceptive use, disease stage, radiation treatment, chemotherapy, and

41	$\begin{aligned} & \text { Abrahamson } \\ & (2006) \\ & \text { USA }^{41} \end{aligned}$	A follow-up study	Female	20-54	212	1264	8.5	Breast cancer	Recreational physical activity	15-23.9: 0.44 (0.21-0.93) $\geq 24: 0.52(0.26-1.06)$ (MET-h/wk) Pre-diagnosis 1.6-16.6: 1.00 16.7-29.4: $0.74(0.50-1.11)$ 29.5-43.0: $0.97(0.66-1.41)$ 43.1-98.0: $1.12(0.78-1.62)$	Stage and income
42	Haydon (2006) Austrialia ${ }^{42}$	The Melbourne Collaborative Cohort Study (MCCS)	Both	25-75	181	526	5.5	Colorectal cancer	Recreational physical activity	Pre-diagnosis No exercise: 1.00 Exercise: 0.73 (0.54-1.00)	Age, sex, stage
43	$\begin{aligned} & \text { Meyerhardt } \\ & (2006) \\ & \text { USA }^{43} \end{aligned}$	The Nurses' Health Study (NHS) cohort	Female	20-54	72	554	9.6	Colorectal cancer	Recreational physical activity	(MET-h/wk) Post-diagnosis <3: 1.00 3-8.9: 0.92 (0.50-1.69) 9-17.9: 0.57 (0.27-1.20) ≥ 18 : 0.39 (0.18-0.82) Pre-diagnosis <3: 1.00 3-8.9: 0.83 (0.45-1.53) 9-17.9: 1.05 (0.56-1.99) ≥ 18 : 0.86 (0.44-1.67)	BMI, stage of disease, grade of tumor differentiation, colon or rectal primary, age at diagnosis, year of diagnosis, receipt of chemotherapy, time from diagnosis to physical activity measurement, change in body mass index before and after diagnosis, smoking status
44	$\begin{aligned} & \text { Holick (2008) } \\ & \text { USA }{ }^{44} \end{aligned}$	Collaborative Women's Longevity Study (CWLS)	Female	20-79	109	4482	5.6	Breast cancer	Recreational physical activity		Age at diagnosis, stage of disease at diagnosis, state of residence at diagnosis, and interval between diagnosis and physical activity assessment
45	$\begin{aligned} & \text { Sundelof (2008) } \\ & \text { Sweden }{ }^{45} \end{aligned}$	Swedish Oesophageal and Cardia Cancer study	Both	1	510	580	10	Oesophageal adenocarcino ma, Oesophageal	Recreational physical activity	Pre-diagnosis Oesophageal adenocarcinoma $\begin{aligned} & 1^{\text {st }} \text { (low): } 1.00 \\ & 2^{\text {nd }}: 0.90(0.50-1.50) \\ & \hline \end{aligned}$	Age, sex, education, symptomatic gastroesophageal reflux, BMI, tobacco smoking,

Moderate-vigorous	
<5.3: 1.00	
5.3-15: 0.77 (0.44-1.34)	
15-27: 0.47 (0.24-0.91)	
>27: 0.90 (0.51-1.58)	
Moderate (h / wk)	
<1: 1.00	
1-3: 0.65 (0.36-1.26)	
3-6: 0.69 (0.40-1.19)	
>6: 0.73 (0.40-1.33)	
Vigorous (h/wk)	
0: 1.00	
0-1: 0.79 (0.42-1.48)	
>1: 1.10 (0.68-1.80)	
Pre-diagnosis	Race, BMI, total caloric
$\leq 0.5 \mathrm{~h} / \mathrm{wk} / \mathrm{y}$ of any activity: 1.00	intake, number of
$0.51-3.0 \mathrm{~h} / \mathrm{wk} / \mathrm{y}$ of moderate or strenuous activity: 0.65 (0.45-0.93)	comorbid conditions, and estrogen receptor status
$>3.0 \mathrm{~h} / \mathrm{wk} / \mathrm{y}$ either activity type: $0.53 \text { (0.35-0.80) }$	
(MET-h/wk)	Age, tumor stage,
Recreational	treatment (chemotherapy,
$\leq 5: 1.00$	hormone therapy and
5-10: 0.68 (0.47-0.98)	radiation therapy), SBR
10-19: 0.65 (0.45-0.94)	grade, BMI and other
>19:0.54 (0.36-0.79)	comorbidity conditions
Total	
$\leq 95: 1.00$	
95-120: 0.70 (047-1.04)	
120-150: 0.81 (0.56-1.18)	
>151: 0.79 (0.53-1.17)	
Household	
$\leq 5: 1.00$	
5-10: 0.70 (0.47-1.04)	
10-19:0.81 (0.56-1.18)	
>19: 0.79 (0.53-1.17)	
Moderate	
0-1.4: 1.00	
1.4-3.9: 0.67 (0.50-0.91)	
$\geq 3.9: 0.56$ (0.38-0.82)	
Vigorous	
<0.03: 1.00	
$\geq 0.03: 0.74$ (0.56-0.98)	
Pre-diagnosis (h/wk)	Alcohol, smoking, physical activity, body
Inactive <2: 1.00	mass index, hormone

61	$\begin{aligned} & \text { Cleveland } \\ & (2012) \\ & \text { USA }^{61} \end{aligned}$	The Long Island Breast Cancer Study Project	Female	1	120	1273	5.56	Breast cancer	Recreational physical activity	Pre-diagnosis (MET-h/wk) Total $0: 1.00$ 0-9: $0.61(0.40-0.92)$ $\geq 9: 0.66(0.42-1.06)$ Moderate $0: 1.00$ 0-9: $0.60(0.39-0.91)$ $\geq 9: 0.73(0.44-1.20)$ Vigorous $0: 1.00$ $0-9: 1.61(0.75-1.79)$ $\geq 9: 0.83(0.59-0.91)$	Age at diagnosis, body mass index and menopausal status
62	$\begin{aligned} & \text { Kuiper (2012) } \\ & \text { USA }{ }^{62} \end{aligned}$	WHI(The Women's Health Initiative)	Female	50-79	171	1339	11.9	Colorectal cancer	Recreational physical activity	```(MET-h/wk) Pre-diagnosis 0: 1.00 0-2.9: 0.98 (0.58-1.66) 3.0-8.9: 1.01 (0.65-1.57) 9.0-17.9: 0.74 (0.46-1.20) \(\geq 18.0\) : 0.68 (0.41-1.13) Post-diagnosis 0: 1.00 0-2.9: 0.49 (0.21-1.14) 3.0-8.9: 0.30 (0.12-0.73) 9.0-17.9: 0.53 (0.22-1.25) \(\geq 18.0\) : 0.29 (0.11-0.77)```	Age at diagnosis, study arm, BMI, tumor stage, ethnicity, education, alcohol, smoking, and hormone therapy use
63	$\begin{aligned} & \text { Arem (2013) } \\ & \text { USA }^{63} \end{aligned}$	WHI(The Women's Health Initiative)	Female	50-79	66	983	5.3	Endometrial cancer	Recreational physical activity	```Pre-diagnosis (MET-h/wk) 0: 1.00 0-11.26: 0.51 (0.26-1.01) \(\geq 11.26\) : 1.05 (0.79-1.38)```	Age, BMI, tumor grade, tumor stage, and age at menarche, and lag time from baseline measure to endometrial cancer diagnosis
64	$\begin{aligned} & \text { Arem (2013) } \\ & \text { USA }^{64} \end{aligned}$	The NIH-AARP Diet and Health Study	Female	50-71	133	1400	13	Endometrial cancer	Recreational physical activity	Pre-diagnosis (h/wk) Moderate-vigorous Never/rarely: 1.00 <1: 1.26 (0.59-2.70) 1-3: 0.45 (0.19-1.04) 4-7: 0.96 (0.46-2.03) >7: 0.91 (0.43-1.93)	Tumor grade, tumor stage, surgery, chemotherapy, race, family history of breast cancer, diabetes, smoking status, and continuous body mass index
65	$\begin{aligned} & \text { Campbell (2013) } \\ & \text { USA }{ }^{65} \end{aligned}$	CPS-II	Both	1	379	2293	8.1	Colorectal cancer	Recreational physical activity	(MET-h/wk) Pre-diagnosis <3.5: 1.00	Age at diagnosis, sex, smoking status, body mass index, red meat

Abbreviations: MET=Metabolic equivalents of task; BMI=body mass index

Supplementary References

1 Arraiz GA, Wigle DT, Mao Y. Risk assessment of physical activity and physical fitness in the Canada Health Survey mortality follow-up study. J Clin Epidemiol 1992;45:419-28.

2 Kampert JB, Blair SN, Barlow CE, et al. Physical activity, physical fitness, and all-cause and cancer mortality: a prospective study of men and women. Ann Epidemiol 1996;6:452-7.

3 Rosengren A, Wilhelmsen L. Physical activity protects against coronary death and deaths from all causes in middle-aged men. Evidence from a 20-year follow-up of the primary prevention study in Goteborg. Ann Epidemiol 1997;7:69-75.
4 Smith G, Shipley MJ, Batty GD, et al. Physical activity and cause-specific mortality in the Whitehall study. Public Health 2000;114:308-15.
5 Batty GD, Shipley MJ, Marmot M, et al. Physical activity and cause-specific mortality in men: further evidence from the Whitehall study. Eur J Epidemiol 2001;17:863-9.

6 Kilander L, Berglund L, Boberg M, et al. Education, lifestyle factors and mortality from cardiovascular disease and cancer. A 25-year follow-up of Swedish 50-year-old men. Int J Epidemiol 2001;30:1119-26.

7 Lee SY, Kim MT, Jee SH, et al. Does hypertension increase mortality risk from lung cancer? A prospective cohort study on smoking, hypertension and lung cancer risk among Korean men. J Hypertens 2002 20:617-22.
8 Lee IM, Sesso HD, Oguma Y, et al. Physical activity, body weight, and pancreatic cancer mortality. Br J Cancer 2003;88:679-83.
9 Hu G, Tuomilehto J, Silventoinen K, et al. The effects of physical activity and body mass index on cardiovascular, cancer and all-cause mortality among 47212 middle-aged Finnish men and women. Int J Obes (Lond) 2005;29:894-902.
10 Nilsen TI, Romundstad PR, Vatten LJ. Recreational physical activity and risk of prostate cancer: A prospective population-based study in Norway (the HUNT study). Int J Cancer 2006;119:2943-7.
11 Schnohr P, Lange P, Scharling H, et al. Long-term physical activity in leisure time and mortality from coronary heart disease, stroke, respiratory diseases, and cancer. The Copenhagen City Heart Study. Eur J Cardiovasc Prev Rehabil 2006;13:173-9.
12 Huxley R. The role of lifestyle risk factors on mortality from colorectal cancer in populations of the Asia-Pacific region. Asian Pac J Cancer Prev 2007;8:191-8.
13 Lin Y, Kikuchi S, Tamakoshi A, et al. Obesity, physical activity and the risk of pancreatic cancer in a large Japanese cohort. Int J Cancer 2007;120:2665-71.
14 Matthews CE, Jurj AL, Shu XO, et al. Influence of exercise, walking, cycling, and overall nonexercise physical activity on mortality in Chinese women. Am J Epidemiol 2007;165:1343-50.
15 Orsini N, Bellocco R, Bottai M, et al. Combined effects of obesity and physical activity in predicting mortality among men. J Intern Med 2008 $264: 442-51$.
16 van Dam RM, Li T, Spiegelman D, et al. Combined impact of lifestyle factors on mortality: prospective cohort study in US women. BMJ $2008337:$ al440.
17 Orsini N, Bellocco R, Bottai M, et al. A prospective study of lifetime physical activity and prostate cancer incidence and mortality. Br J Cancer 2009;101:1932-8.
18 Stevens RJ, Roddam AW, Spencer EA, et al. Factors associated with incident and fatal pancreatic cancer in a cohort of middle-aged women. Int J Cancer 2009 124:2400-5.
19 Autenrieth CS, Baumert J, Baumeister SE, et al. Association between domains of physical activity and all-cause, cardiovascular and cancer mortality. Eur J Epidemiol 2011;26:91-9.
20 Batty GD, Kivimaki M, Clarke R, et al. Modifiable risk factors for prostate cancer mortality in London: forty years of follow-up in the Whitehall study. Cancer Causes Control 2011;22:311-8.
21 Borch KB, Braaten T, Lund E, et al. Physical activity and mortality among Norwegian women - the Norwegian Women and Cancer Study. Clin Epidemiol 2011;3:229-35.
22 Laukkanen JA, Rauramaa R, Makikallio TH, et al. Intensity of leisure-time physical activity and cancer mortality in men. Br J Sports Med 2011;45:125-9.
23 McCullough ML, Patel AV, Kushi LH, et al. Following cancer prevention guidelines reduces risk of cancer, cardiovascular disease, and all-cause mortality. Cancer

Epidemiol Biomarkers Prev 2011;20:1089-97.

24 Morrison DS, Batty GD, Kivimaki M, et al. Risk factors for colonic and rectal cancer mortality: evidence from 40 years' follow-up in the Whitehall I study. J Epidemiol Community Health 2011;65:1053-8.
25 Nakamura K, Nagata C, Wada K, et al. Cigarette smoking and other lifestyle factors in relation to the risk of pancreatic cancer death: a prospective cohort study in Japan. Jpn J Clin Oncol 2011;41:225-31.
26 Wen CP, Wai JP, Tsai MK, et al. Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet 2011;378:1244-53.
27 Mok Y, Won S, Kimm H, et al. Physical Activity Level and Risk of Death: The Severance Cohort Study. J Epidemiol 2012.
28 Parekh N, Lin Y, Craft LL, et al. Longitudinal associations of leisure-time physical activity and cancer mortality in the Third National Health and Nutrition Examination Survey (1986-2006). J Obes 2012;2012:518358.
29 Sahlqvist S, Goodman A, Simmons RK, et al. The association of cycling with all-cause, cardiovascular and cancer mortality: findings from the population-based EPIC-Norfolk cohort. BMJ Open 2013;3:e003797.
30 Vergnaud AC, Romaguera D, Peeters PH, et al. Adherence to the World Cancer Research Fund/American Institute for Cancer Research guidelines and risk of death in Europe: results from the European Prospective Investigation into Nutrition and Cancer cohort study1,4. Am J Clin Nutr 2013;97:1107-20.
31 Wang N, Zhang X, Xiang YB, et al. Associations of Tai Chi, walking, and jogging with mortality in Chinese men. Am J Epidemiol 2013;178:791-6.
32 Williams PT. Breast cancer mortality vs. exercise and breast size in runners and walkers. PLoS One 2013;8:e80616.
33 Yu R, Leung J, Woo J. Housework reduces all-cause and cancer mortality in Chinese men. PLoS One 2013;8:e61529.
34 Arem H, Moore SC, Park Y, et al. Physical activity and cancer-specific mortality in the NIH-AARP Diet and Health Study cohort. Int J Cancer 2014;135:423-31.
35 Hastert TA, Beresford SA, Sheppard L, et al. Adherence to the WCRF/AICR cancer prevention recommendations and cancer-specific mortality: results from the Vitamins and Lifestyle (VITAL) Study. Cancer Causes Control 2014;25:541-52.
36 Wanner M, Tarnutzer S, Martin BW, et al. Impact of different domains of physical activity on cause-specific mortality: a longitudinal study. Prev Med 2014;62:89-95.
37 Rohan TE, Fu W, Hiller JE. Physical activity and survival from breast cancer. Eur J Cancer Prev 1995;4:419-24.
38 Enger SM, Bernstein L. Exercise activity, body size and premenopausal breast cancer survival. Br J Cancer 2004;90:2138-41.
39 Borugian MJ, Sheps SB, Kim-Sing C, et al. Insulin, macronutrient intake, and physical activity: are potential indicators of insulin resistance associated with mortality from breast cancer? Cancer Epidemiol Biomarkers Prev 2004 13:1163-72.
40 Holmes MD, Chen WY, Feskanich D, et al. Physical activity and survival after breast cancer diagnosis. JAMA 2005 293:2479-86.

41 Abrahamson PE, Gammon MD, Lund MJ, et al. Recreational physical activity and survival among young women with breast cancer. Cancer 2006;107:1777-85.
42 Haydon AM, Macinnis RJ, English DR, et al. Effect of physical activity and body size on survival after diagnosis with colorectal cancer. Gut 2006;55:62-7.
43 Meyerhardt JA, Giovannucci EL, Holmes MD, et al. Physical activity and survival after colorectal cancer diagnosis. J Clin Oncol 2006;24:3527-34.
44 Holick CN, Newcomb PA, Trentham-Dietz A, et al. Physical activity and survival after diagnosis of invasive breast cancer. Cancer Epidemiol Biomarkers Prev 2008;17:379-86.
45 Sundelof M, Lagergren J, Ye W. Patient demographics and lifestyle factors influencing long-term survival of oesophageal cancer and gastric cardia cancer in a nationwide study in Sweden. Eur J Cancer 2008;44:1566-71.
Yang L, Klint A, Lambe M, et al. Predictors of ovarian cancer survival: a population-based prospective study in Sweden. Int J Cancer 2008;123:672-9. 2009;27:1969-75.
49 Meyerhardt JA, Giovannucci EL, Ogino S, et al. Physical activity and male colorectal cancer survival. Arch Intern Med 2009;169:2102-8.
50 Sternfeld B, Weltzien E, Quesenberry CP, Jr., et al. Physical activity and risk of recurrence and mortality in breast cancer survivors: findings from the LACE study. Cancer Epidemiol Biomarkers Prev 2009;18:87-95.
51 West-Wright CN, Henderson KD, Sullivan-Halley J, et al. Long-term and recent recreational physical activity and survival after breast cancer: the California Teachers Study. Cancer Epidemiol Biomarkers Prev 2009;18:2851-9.
52 Friedenreich CM, Gregory J, Kopciuk KA, et al. Prospective cohort study of lifetime physical activity and breast cancer survival. Int J Cancer 2009 124:1954-62.
53 Hellmann SS, Thygesen LC, Tolstrup JS, et al. Modifiable risk factors and survival in women diagnosed with primary breast cancer: results from a prospective cohort study. Eur J Cancer Prev 2010;19:366-73.
54 Keegan TH, Milne RL, Andrulis IL, et al. Past recreational physical activity, body size, and all-cause mortality following breast cancer diagnosis: results from the Breast Cancer Family Registry. Breast Cancer Res Treat 2010;123:531-42.
55 Emaus A, Veierod MB, Tretli S, et al. Metabolic profile, physical activity, and mortality in breast cancer patients. Breast Cancer Res Treat 2010 121:651-60.
56 Baade PD, Meng X, Youl PH, et al. The impact of body mass index and physical activity on mortality among patients with colorectal cancer in Queensland, Australia. Cancer Epidemiol Biomarkers Prev 2011;20:1410-20.
57 Irwin ML, McTiernan A, Manson JE, et al. Physical activity and survival in postmenopausal women with breast cancer: results from the women's health initiative. Cancer Prev Res (Phila) 2011;4:522-9.

58 Kenfield SA, Stampfer MJ, Giovannucci E, et al. Physical activity and survival after prostate cancer diagnosis in the health professionals follow-up study. J Clin Oncol 2011;29:726-32.
59 Morikawa T, Kuchiba A, Yamauchi M, et al. Association of CTNNB1 (beta-catenin) alterations, body mass index, and physical activity with survival in patients with colorectal cancer. JAMA 2011;305:1685-94.
60 Beasley JM, Kwan ML, Chen WY, et al. Meeting the physical activity guidelines and survival after breast cancer: findings from the after breast cancer pooling project. Breast Cancer Res Treat 2012;131:637-43.
61 Cleveland RJ, Eng SM, Stevens J, et al. Influence of prediagnostic recreational physical activity on survival from breast cancer. Eur J Cancer Prev 2012;21:46-54.
62 Kuiper JG, Phipps AI, Neuhouser ML, et al. Recreational physical activity, body mass index, and survival in women with colorectal cancer. Cancer Causes Control 2012.

63 Arem H, Chlebowski R, Stefanick ML, et al. Body mass index, physical activity, and survival after endometrial cancer diagnosis: results from the Women's Health Initiative. Gynecol Oncol 2013;128:181-6.
64 Arem H, Park Y, Pelser C, et al. Prediagnosis body mass index, physical activity, and mortality in endometrial cancer patients. J Natl Cancer Inst 2013;105:342-9.
65 Campbell PT, Patel AV, Newton CC, et al. Associations of recreational physical activity and leisure time spent sitting with colorectal cancer survival. J Clin Oncol 2013;31:876-85.
66 Jeon J, Sato K, Niedzwiecki D, et al. Impact of Physical Activity After Cancer Diagnosis on Survival in Patients With Recurrent Colon Cancer: Findings From CALGB 89803/Alliance. Clin Colorectal Cancer 2013.
67 Schmidt ME, Chang-Claude J, Vrieling A, et al. Association of pre-diagnosis physical activity with recurrence and mortality among women with breast cancer. Int J Cancer 2013;133:1431-40.
68 Tao MH, Hainaut P, Marian C, et al. Association of prediagnostic physical activity with survival following breast cancer diagnosis: influence of TP53 mutation status. Cancer Causes Control 2013.
69 Bradshaw PT, Ibrahim JG, Khankari N, et al. Post-diagnosis physical activity and survival after breast cancer diagnosis: the Long Island Breast Cancer Study. Breast Cancer Res Treat 2014;145:735-42.
70 Pelser C, Arem H, Pfeiffer RM, et al. Prediagnostic lifestyle factors and survival after colon and rectal cancer diagnosis in the National Institutes of Health (NIH)-AARP Diet and Health Study. Cancer 2014;120:1540-7.
71 Zhou Y, Chlebowski R, LaMonte MJ, et al. Body mass index, physical activity, and mortality in women diagnosed with ovarian cancer: results from the Women's Health Initiative. Gynecol Oncol 2014;133:4-10.

