Skip to main content
Log in

Estrogen and muscle stiffness have a negative relationship in females

  • Sports Medicine
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Hormonal fluctuations are one potential reason why females might have a greater rate of noncontact ACL injury. The hamstrings are capable of limiting anterior cruciate ligament (ACL) loading. This study examined whether relationships existed between reproductive hormones (estradiol-β-17, free testosterone, and progesterone) and hamstring neuromechanical variables (hamstring musculotendinous stiffness (MTS), rate of force production (RFP), time to 50% peak torque (T50%), and electromechanical delay (EMD)) in genders combined and independently.

Methods

Muscle properties of the hamstrings and reproductive hormones were evaluated in 30 subjects (15 males and 15 females) that were free from lower extremity injury and had no history of ACL injury. Females were tested 3–5 days after the onset of menses and were not using oral contraceptive. Pearson correlation coefficients were calculated for each hormone and muscle property.

Results

For genders combined, estrogen (mean = 46.0 ± 28.2 pg/mL) was negatively correlated with RFP (mean = 758.8 ± 507.6 N/kg s−1, r = −0.43, P = 0.02) and MTS (mean = 12.8 ± 2.6 N/cm, r = −0.43, P = 0.02). Free testosterone (mean = 13.2 ± 13.0 pg/mL) was positively correlated with RFP (r = 0.56, P < 0.01) and MTS (r = 0.46, P = 0.01) but negatively correlated with T50% (mean = 114.7 ± 38.9 ms, r = −0.43, P = 0.02). When gender was considered separately, females demonstrated negative correlation between estrogen (mean = 68.0 ± 23.2 pg/mL) and MTS (mean = 11.7 ± 1.5 N/cm, r = −0.53, P = 0.05) and free testosterone (mean = 1.5 ± 0.6 pg/mL) and MTS (r = −0.52, P = 0.05). Males alone displayed no significant correlations between the selected hormones and muscle properties.

Conclusions

Correlations exist between muscle properties and reproductive hormones. Females, however, may be more sensitive to reproductive hormones and their fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abt JP, Sell TC, Laudner KG, McCrory JL, Loucks TL, Berga SL, Lephart SM (2007) Neuromuscular and biomechanical characteristics do not vary across the menstrual cycle. Knee Surg Sports Traumatol Arthrosc 15(7):901–907

    Article  PubMed  Google Scholar 

  2. Arendt EA, Agel J, Dick R (1999) Anterior cruciate ligament injury patterns among collegiate men and women. J Athl Train 34(2):86–92

    PubMed  CAS  Google Scholar 

  3. Bambaeichi E, Reilly T, Cable NT, Giacomoni M (2004) The isolated and combined effects of menstrual cycle phase and time-of-day on muscle strength of eumenorrheic females. Chronobiol Int 21(4–5):645–660

    Article  PubMed  CAS  Google Scholar 

  4. Bell DR, Myrick MP, Blackburn JT, Shultz SJ, Guskiewicz KM, Padua DA (2009) The effect of menstrual-cycle phase on hamstring extensibility and muscle stiffness. J Sport Rehabil 18(4):553–563

    PubMed  Google Scholar 

  5. Beynnon BD, Johnson RJ, Braun S, Sargent M, Bernstein IM, Skelly JM, Vacek PM (2006) The relationship between menstrual cycle phase and anterior cruciate ligament injury: a case-control study of recreational alpine skiers. Am J Sports Med 34(5):757–764

    Article  PubMed  Google Scholar 

  6. Blackburn JT, Bell DR, Norcross MF, Hudson JD, Engstrom LA (2009) Comparison of hamstring neuromechanical properties between healthy males and females and the influence of musculotendinous stiffness. J Electromyogr Kinesiol 19(5):e362–e369

    Article  PubMed  Google Scholar 

  7. Blackburn JT, Bell DR, Norcross MF, Hudson JD, Kimsey MH (2009) Sex comparison of hamstring structural and material properties. Clin Biomech (Bristol, Avon) 24(1):65–70

    Article  Google Scholar 

  8. Blackburn JT, Riemann BL, Padua DA, Guskiewicz KM (2004) Sex comparison of extensibility, passive, and active stiffness of the knee flexors. Clin Biomech (Bristol, Avon) 19(1):36–43

    Article  Google Scholar 

  9. Butler DL, Noyes FR, Grood ES (1980) Ligamentous restraints to anterior–posterior drawer in the human knee. A biomechanical study. J Bone Joint Surg Am 62(2):259–270

    PubMed  CAS  Google Scholar 

  10. Dempster W, Gabel W, Felts W (1959) The anthropometry of manual work space for the seated subjects. Am J Phys Anthrop 17:289–317

    Article  PubMed  CAS  Google Scholar 

  11. Duan XH, Allen RH, Sun JQ (1997) A stiffness-varying model of human gait. Med Eng Phys 19(6):518–524

    Article  PubMed  CAS  Google Scholar 

  12. Eiling E, Bryant AL, Petersen W, Murphy A, Hohmann E (2007) Effects of menstrual-cycle hormone fluctuations on musculotendinous stiffness and knee joint laxity. Knee Surg Sports Traumatol Arthrosc 15(2):126–132

    Article  PubMed  CAS  Google Scholar 

  13. Franchimont P, Valcke JC, Lambotte R (1974) Female gonadal dysfunction. Clin Endocrinol Metab 3(3):533–556

    Article  PubMed  CAS  Google Scholar 

  14. Friden C, Hirschberg AL, Saartok T (2003) Muscle strength and endurance do not significantly vary across 3 phases of the menstrual cycle in moderately active premenopausal women. Clin J Sport Med 13(4):238–241

    Article  PubMed  Google Scholar 

  15. Fukuda Y, Woo SL, Loh JC, Tsuda E, Tang P, McMahon PJ, Debski RE (2003) A quantitative analysis of valgus torque on the ACL: a human cadaveric study. J Orthop Res 21(6):1107–1112

    Article  PubMed  Google Scholar 

  16. Granata KP, Wilson SE, Padua DA (2002) Gender differences in active musculoskeletal stiffness. Part I. Quantification in controlled measurements of knee joint dynamics. J Electromyogr Kinesiol 12(2):119–126

    Article  PubMed  Google Scholar 

  17. Hackney AC (1999) Influence of oestrogen on muscle glycogen utilization during exercise. Acta Physiol Scand 167(3):273–274

    Article  PubMed  CAS  Google Scholar 

  18. Hackney AC, Viru A (2008) Research methodology: endocrinologic measurements in exercise science and sports medicine. J Athl Train 43(6):631–639

    Article  PubMed  Google Scholar 

  19. Hertel J, Williams NI, Olmsted-Kramer LC, Leidy HJ, Putukian M (2006) Neuromuscular performance and knee laxity do not change across the menstrual cycle in female athletes. Knee Surg Sports Traumatol Arthrosc 14(9):817–822

    Article  PubMed  Google Scholar 

  20. Hewett TE, Myer GD, Ford KR (2006) Anterior cruciate ligament injuries in female athletes: part 1, mechanisms and risk factors. Am J Sports Med 34(2):299–311

    Article  PubMed  Google Scholar 

  21. Hewett TE, Zazulak BT, Myer GD (2007) Effects of the menstrual cycle on anterior cruciate ligament injury risk: a systematic review. Am J Sports Med 35(4):659–668

    Article  PubMed  Google Scholar 

  22. Julian FJ, Morgan DL (1981) Variation of muscle stiffness with tension during tension transients and constant velocity shortening in the frog. J Physiol 319:193–203

    PubMed  CAS  Google Scholar 

  23. Kubo K, Miyamoto M, Tanaka S, Maki A, Tsunoda N, Kanehisa H (2009) Muscle and tendon properties during menstrual cycle. Int J Sports Med 30(2):139–143

    Article  PubMed  CAS  Google Scholar 

  24. Lebrun CM, McKenzie DC, Prior JC, Taunton JE (1995) Effects of menstrual cycle phase on athletic performance. Med Sci Sports Exerc 27(3):437–444

    PubMed  CAS  Google Scholar 

  25. Lemoine S, Granier P, Tiffoche C, Rannou-Bekono F, Thieulant ML, Delamarche P (2003) Estrogen receptor alpha mRNA in human skeletal muscles. Med Sci Sports Exerc 35(3):439–443

    Article  PubMed  CAS  Google Scholar 

  26. Li G, Rudy TW, Sakane M, Kanamori A, Ma CB, Woo SL (1999) The importance of quadriceps and hamstring muscle loading on knee kinematics and in situ forces in the ACL. J Biomech 32(4):395–400

    Article  PubMed  CAS  Google Scholar 

  27. Liu SH, al-Shaikh R, Panossian V, Yang RS, Nelson SD, Soleiman N, Finerman GA, Lane JM (1996) Primary immunolocalization of estrogen and progesterone target cells in the human anterior cruciate ligament. J Orthop Res 14(4):526–533

    Article  PubMed  CAS  Google Scholar 

  28. Liu SH, Al-Shaikh RA, Panossian V, Finerman GA, Lane JM (1997) Estrogen affects the cellular metabolism of the anterior cruciate ligament. A potential explanation for female athletic injury. Am J Sports Med 25(5):704–709

    Article  PubMed  CAS  Google Scholar 

  29. Lloyd DG, Buchanan TS (2001) Strategies of muscular support of varus and valgus isometric loads at the human knee. J Biomech 34(10):1257–1267

    Article  PubMed  CAS  Google Scholar 

  30. Lloyd DG, Buchanan TS, Besier TF (2005) Neuromuscular biomechanical modeling to understand knee ligament loading. Med Sci Sports Exerc 37(11):1939–1947

    Article  PubMed  Google Scholar 

  31. Markolf KL, Burchfield DM, Shapiro MM, Shepard MF, Finerman GA, Slauterbeck JL (1995) Combined knee loading states that generate high anterior cruciate ligament forces. J Orthop Res 13(6):930–935

    Article  PubMed  CAS  Google Scholar 

  32. Markolf KL, Mensch JS, Amstutz HC (1976) Stiffness and laxity of the knee—the contributions of the supporting structures. A quantitative in vitro study. J Bone Joint Surg Am 58(5):583–594

    PubMed  CAS  Google Scholar 

  33. Matsumoto H, Suda Y, Otani T, Niki Y, Seedhom BB, Fujikawa K (2001) Roles of the anterior cruciate ligament and the medial collateral ligament in preventing valgus instability. J Orthop Sci 6(1):28–32

    Article  PubMed  CAS  Google Scholar 

  34. McMurry RG, Hackney AC (2000) The endocrine system and exercise. In: Garrett W, Kirkendall D (eds) Exercise & sports science. Lippincott Williams & Wilkins, Philadelphia, pp 135–162

    Google Scholar 

  35. Miyasaka T, Matsumoto H, Suda Y, Otani T, Toyama Y (2002) Coordination of the anterior and posterior cruciate ligaments in constraining the varus-valgus and internal-external rotatory instability of the knee. J Orthop Sci 7(3):348–353

    Article  PubMed  Google Scholar 

  36. More RC, Karras BT, Neiman R, Fritschy D, Woo SL, Daniel DM (1993) Hamstrings—an anterior cruciate ligament protagonist. An in vitro study. Am J Sports Med 21(2):231–237

    Article  PubMed  CAS  Google Scholar 

  37. Morgan DL (1977) Separation of active and passive components of short-range stiffness of muscle. Am J Physiol 232(1):C45–C49

    PubMed  CAS  Google Scholar 

  38. Morgan DL, Proske U, Warren D (1978) Measurements of muscle stiffness and the mechanism of elastic storage of energy in hopping kangaroos. J Physiol 282:253–261

    PubMed  CAS  Google Scholar 

  39. Sakane M, Livesay GA, Fox RJ, Rudy TW, Runco TJ, Woo SL (1999) Relative contribution of the ACL, MCL, and bony contact to the anterior stability of the knee. Knee Surg Sports Traumatol Arthrosc 7(2):93–97

    Article  PubMed  CAS  Google Scholar 

  40. Sarwar R, Niclos BB, Rutherford OM (1996) Changes in muscle strength, relaxation rate and fatiguability during the human menstrual cycle. J Physiol 493(Pt 1):267–272

    PubMed  CAS  Google Scholar 

  41. Shultz SJ, Gansneder BM, Sander TC, Kirk SE, Perrin DH (2006) Absolute serum hormone levels predict the magnitude of change in anterior knee laxity across the menstrual cycle. J Orthop Res 24(2):124–131

    Article  PubMed  CAS  Google Scholar 

  42. Shultz SJ, Kirk SE, Johnson ML, Sander TC, Perrin DH (2004) Relationship between sex hormones and anterior knee laxity across the menstrual cycle. Med Sci Sports Exerc 36(7):1165–1174

    Article  PubMed  CAS  Google Scholar 

  43. Shultz SJ, Schmitz RJ, Nguyen AD, Chaudhari AM, Padua DA, McLean SG, Sigward SM (2010) ACL Research Retreat V: an update on ACL injury risk and prevention, March 25–27, 2010, Greensboro, NC. J Athl Train 45(5):499–508

    Article  PubMed  Google Scholar 

  44. Tietz NW (1990) Clinical guide to laboratory tests, 2nd edn. W.B. Saunders Co., Philadelphia, PA

    Google Scholar 

  45. Wagner H, Blickhan R (2003) Stabilizing function of antagonistic neuromusculoskeletal systems: an analytical investigation. Biol Cybern 89(1):71–79

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Bell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bell, D.R., Blackburn, J.T., Norcorss, M.F. et al. Estrogen and muscle stiffness have a negative relationship in females. Knee Surg Sports Traumatol Arthrosc 20, 361–367 (2012). https://doi.org/10.1007/s00167-011-1577-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-011-1577-y

Keywords

Navigation