Skip to main content
Log in

Biochemical Aspects of Overtraining in Endurance Sports

The Metabolism Alteration Process Syndrome

  • Current Opinion
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Recent studies have shown that endurance overtraining could result from successive and cumulative alterations in metabolism, which become chronic during training. The onset of this process is a biochemical alteration in carbohydrate (saccharide) metabolism. During endurance exercises, the amount of saccharide chains from two blood glycoproteins (α2-macroglobulin and α1-acid glycoprotein) was found to have decreased, i.e. concentrations of these proteins remained unchanged but their quality changed. These saccharide chains were probably used for burning liver glycogen stores during exercise. This step was followed by alterations in lipid metabolism. The most relevant aspect of this step was that the mean chain length of blood fatty acids decreased, i.e. the same amount of fatty acids were found within the blood, but overtrained individuals presented shorter fatty acids than well-trained individuals. This suggests that alterations appeared in the liver synthesis of long-chain fatty acids or that higher peroxidation of blood lipoparticles occurred. For the final step of this overtraining process, it was found that these dysfunctions in carbohydrate/lipid metabolism led to the higher use of amino acids, which probably resulted from protein catabolism. The evolution of three protein concentrations (α1-acid glycoprotein, α2-macroglobulin and IgG3) correlated with this amino acid concentration increase, suggesting a specific catabolism of these proteins. At this time only, overtraining was clinically diagnosed through conventional symptoms. Therefore, this process described successive alterations in exercise metabolism that shifted from the main energetic stores of exercise (carbohydrates and lipids) towards molecular pools (proteins) normally not substantially used for the energetic supply of skeletal muscles. Now, a general biochemical model of the overtraining process may be proposed which includes most of the previously identified metabolic hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fitts RH. Cellular mechanisms of muscle fatigue. Physiol Rev 1994; 74: 49–94

    Article  PubMed  CAS  Google Scholar 

  2. Snyder AC. Overtraining and glycogen depletion hypothesis. Med Sci Sports Exerc 1998; 30: 1146–50

    Article  PubMed  CAS  Google Scholar 

  3. Gabriel HH, Urhausen A, Valet G, et al. Overtraining and immune system: a prospective longitudinal study in endurance athletes. Med Sci Sports Exerc 1998; 30: 1151–7

    Article  PubMed  CAS  Google Scholar 

  4. Lehmann M, Foster C, Kent J. Overtraining in endurance athletes: a brief review. Med Sci Sports Exerc 1993; 25: 854–62

    Article  PubMed  CAS  Google Scholar 

  5. Fry RW, Morton AR, Keast D. Overtraining in athletes: an update. Sports Med 1991; 12: 32–65

    Article  PubMed  CAS  Google Scholar 

  6. Petibois C, Cazorla G, Déléris G. FT-IR spectroscopy utilization to sportsmen fatigability evaluation and control. Med Sci Sports Exerc 2000; 32: 1803–8

    Article  PubMed  CAS  Google Scholar 

  7. Bosquet L, Leger L, Legros P. Blood lactate response to overtraining in male endurance athletes. Fur J Appl Physiol 2001; 84: 107–14

    Article  CAS  Google Scholar 

  8. Snyder A, Kuipers H, Cheng B, et al. Overtraining following intensified training with normal muscle glycogen. Med Sci Sports Exerc 1995; 27: 1063–70

    Article  PubMed  CAS  Google Scholar 

  9. Lehmann M, Gastmann U, Lormes W, et al. Influence of intensified training on neuroendocrine axes regulation: possible impact of tissue markers like leptin, inhibin B, vitamin D. 3rd Colloque ’Biologie de l’exercice musculaire’; 2001 May 18; Clermont-Ferrand. 51

  10. Newsholme EA, Crabtree B, Ardawi MSM. Glutamine metabolism in lymphocytes, its biochemical, physiological and clinical importance. Q T Exp Physiol 1985; 70: 473–8

    CAS  Google Scholar 

  11. Rowbottom DG, Keast D, Goodman A, et al. The haematological, biochemical, and immunological profile of athletes suffering from the overtraining syndrome. Fur J Appl Physiol Occup Physiol 1995; 70: 502–9

    Article  CAS  Google Scholar 

  12. McKenzie DC. Markers of excessive exercise. Can J Appl Physiol 1999; 24: 66–73

    Article  PubMed  CAS  Google Scholar 

  13. Smith JA. Exercise, training and red blood cell turnover. Sports Med 1995; 19: 9–31

    Article  Google Scholar 

  14. Fry A, Kraemer W, Van-Borselen F, et al. Performance decrements with high-intensity resistance exercise overtraining. Med Sci Sports Exerc 1994; 26: 1165–73

    PubMed  CAS  Google Scholar 

  15. Rowbottom DG, Keast D, Morton AR. The emerging role of glutamine as an indicator of exercise stress and overtraining. Sports Med 1996; 21: 80–97

    Article  PubMed  CAS  Google Scholar 

  16. Mackinnon LT, Hooper SL, Jones S, et al. Hormonal, immunological, and hematological responses to intensified training in elite swimmers. Med Sci Sports Exerc 1997; 29: 1637–45

    Article  PubMed  CAS  Google Scholar 

  17. Parry-Billings M, Budgett R, Koutekadis Y, et al. Plasma amino-acid concentrations in the overtraining syndrome: possible effects on the immune system. Med Sci Sports Exerc 1992; 24: 1353–8

    PubMed  CAS  Google Scholar 

  18. Smith LL. Cytokine hypothesis of overtraining: a physiological adaptation to excessive stress? Med Sci Sports Exerc 2000; 32: 317–31

    Article  PubMed  CAS  Google Scholar 

  19. Petibois C, Cazorla G, Déléris G. Perspectives in the utilisation of fourier-transform infrared spectroscopy of serum in sports medicine: health monitoring of athletes and prevention of doping. Sports Med 2000; 29: 387–96

    Article  PubMed  CAS  Google Scholar 

  20. Costill DL, Flynn MG, Kirwan JP, et al. Effects of repeated days of intensified training on muscle glycogen and swimming performance. Med Sci Sports Exerc 1988; 20: 249–54

    Article  PubMed  CAS  Google Scholar 

  21. Fry RW, Morton AR, Garcia-Webb P, et al. Biological responses to overload training in endurance sports. Fur J Appl Physiol 1992; 64: 335–44

    Article  CAS  Google Scholar 

  22. Lehmann M, Baumbard P, Wiesenack C, et al. Training-overtraining: influence of a defined increase in training volume vs intensity on performance, catecholamines and some met abolic parameters in experienced middle- and long-distance runners. Eur J Appl Physiol 1992; 64: 169–77

    Article  CAS  Google Scholar 

  23. Sorichter S, Mair J, Koller A, et al. Skeletal troponin I as a marker of exercise-induced muscle damage. J Appl Physiol 1997; 83: 1076–82

    PubMed  CAS  Google Scholar 

  24. Uusitallo AL, Uusitalo AJ, Rusko HK. Heart rate and blood pressure variability during heavy training and overtraining in the female athlete. Int J Sports Med 2000; 21: 45–50

    Article  Google Scholar 

  25. Viguie CA, Frei B, Shigenaga MK, et al. Antioxidant status and indexes of oxidative stress during consecutive days of exercise. J Appl Physiol 1993; 75: 566–72

    PubMed  CAS  Google Scholar 

  26. Budgett R. The overtraining syndrome. BMJ 1994 Aug 13; 309: 465–8

    Article  PubMed  CAS  Google Scholar 

  27. Fry R, Grove J, Morton A, et al. Psychological and immunological correlates of acute overtraining. Br J Sports Med 1994; 28: 241–6

    Article  PubMed  CAS  Google Scholar 

  28. Flynn MG, Pizza FX, Boone JB. Indices of training stress during competitive running and swimming seasons. Int J Sports Med 1994; 15: 21–7

    Article  PubMed  CAS  Google Scholar 

  29. Hooper S, Mackinnon L. Monitoring overtraining in athletes. Sports Med 1995; 20: 321–7

    Article  PubMed  CAS  Google Scholar 

  30. Snyder AC, Jeukendrup AE, Hesselink MKC, et al. A physiological/psychological indicator of overreaching during intensive training. Int J Sports Med 1993; 14: 29–32

    Article  PubMed  CAS  Google Scholar 

  31. Petibois C, Cazorla G, Poortmans J-R, et al. Biochemical aspects of overtraining in endurance sports: a review. Sports Med 2002; 32 (13): 867–78

    Article  PubMed  Google Scholar 

  32. Petibois C, Cazorla G, Déléris G. Nouvelles perspectives pour le suivi biologique des sportifs: 1- l’analyse métabolique par la spectrométrie IR-TF. Sei Sport 2000; 15: 95–7

    Article  Google Scholar 

  33. Petibois C, Cazorla G, Cassaigne A, et al. Triglycerides and glycerol concentration determinations using plasma FT-IR spectra. Appl Spectrosc 2002; 56: 7–13

    Google Scholar 

  34. Petibois C, Cazorla G, Cassaigne A, et al. Plasma protein contents determined by Fourier-transform infrared spectrometry. Clin Chem 2001; 47: 730–8

    PubMed  CAS  Google Scholar 

  35. Petibois C, Melin A-M, Perromat A, et al. Glucose and lactate concentration determination on single microsamples by Fourier-transform infrared spectroscopy. J Lab Clin Med 2000; 135: 210–5

    Article  PubMed  CAS  Google Scholar 

  36. Petibois C, Rigalleau V, Melin A-M, et al. Serum glycemia determined on dried samples using Fourier-transform infrared spectroscopy. Clin Chem 1999; 43: 1530–5

    Google Scholar 

  37. Petibois C, Cazorla G, Déléris G. Nouvelles perspectives pour le suivi biologique des sportifs: 2- la prévention du surentrainement par la spectrométrie IR-TF. Sei Sport 2000; 15: 98–100

    Article  Google Scholar 

  38. Budinova G, Salva J, Volka K. Application of molecular spectroscopy in the mid-infrared region to the determination of glucose and cholesterol in whole blood and in blood serum. Appl Spectrosc 1997; 51: 631–5

    Article  CAS  Google Scholar 

  39. Shaw RA, Kotowich S, Mantsch HH, et al. Quantitation of protein, creatinine, and urea in urine by near-infrared spectroscopy. Clin Biochem 1996; 29: 11–9

    Article  PubMed  CAS  Google Scholar 

  40. Goormaghtigh E, Raussens V, Ruysschaert JM. Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes. Biochim Biophys Acta 1999; 1422: 105–85

    Article  PubMed  CAS  Google Scholar 

  41. Che Man YB, Setiowaty G. Application of fourier transform infrared spectroscopy to determine free fatty acid contents in palm olein. Food Chem 1999; 66: 109–14

    Article  Google Scholar 

  42. Nara M, Okazaki M, Kagi H. An infrared study of human serum very-low-density lipoprotein and low-density lipoprotein. In: Itch K, Tasumi M, editors. Fourier Transform Spectroscopy, 12th International Conference; 1999 Jun 17–20; Tokyo. Tokyo: Waseda University Press, 1999: 451–2

    Google Scholar 

  43. Wood BR, Tait B, McNaughton D. Fourier-transform infrared spectroscopy as a method for monitoring the molecular dynamics of lymphocyte activation. Appl Spectrosc 2000; 54: 353–9

    Article  CAS  Google Scholar 

  44. Mackinnon LT. Chronic exercise training effects on immune function. Med Sci Sports Exerc 2000; 32: S369–76

    Article  Google Scholar 

  45. Wagenmakers AIM. Muscle amino-acid metabolism at rest and during exercise: role in human physiology and metabolism. Exerc Sport Sci Rev 1998; 26: 287–314

    Article  PubMed  CAS  Google Scholar 

  46. Newsholme EA, Biochemical mechanisms to explain immunosuppression in well-trained and overtrained athletes. Int J Sports Med 1994; 15: S142–7

    Article  Google Scholar 

  47. Nieman DC. Exercise, upper respiratory tract infection, and the immune system. Med Sci Sports Exerc 1994; 26: 128–39

    Article  PubMed  CAS  Google Scholar 

  48. Calder PC. Glutamine and the immune system. Clin Nutr 1994; 13: 2–8

    Article  PubMed  CAS  Google Scholar 

  49. Gastmann UA, Lehmann MI. Overtraining and the BCAA hypothesis. Med Sci Sports Exerc 1998; 30: 1173–8

    Article  PubMed  CAS  Google Scholar 

  50. Fernandez-Cuartero B, Rebollar JL, Battle A, et al. Delta aminolevulinate dehydratase (ALA-D) activity in human and experimental diabetes mellitus. Int J Biochem Cell Biol 1999; 31: 479–88

    Article  PubMed  CAS  Google Scholar 

  51. Testa R, Testa I, Manfrini S, et al. Glycosylated hemoglobin and fructosamines: does their determination really reflect the glycemic control in diabetic patients? Life Sci 1996; 59: 43–51

    Article  PubMed  CAS  Google Scholar 

  52. Gugliucci A. Glycation as the glucose link to diabetic complications. J Am Osteopath Assoc 2000; 100: 621–7

    PubMed  CAS  Google Scholar 

  53. Aikens JE, Mayes R. Elevated glycosylated albumin in NIDDM is a function of recent everyday environmental stress. Diabetes Care 1997; 20: 1111–3

    Article  PubMed  CAS  Google Scholar 

  54. Cleare AJ, O’Keane V, Miell J. Plasma leptin in chronic fatigue syndrome and a placebo-controlled study of the effects of lowdose hydrocortisone on leptin secretion. Clin Endocrinol (Oxf) 2001; 55: 113–9

    Article  CAS  Google Scholar 

  55. Alessio HM, Goldfarb AIL Lipid peroxidation and scavenger enzymes during exercise: adaptative response to training. J Appl Physiol 1988; 64: 1333–6

    PubMed  CAS  Google Scholar 

  56. Kiens B. Training and fatty acid metabolism. Adv Exp Med Biol 1998; 441: 229–38

    PubMed  CAS  Google Scholar 

  57. Campaigne BN, Fontaine RN, Park MS, et al. Reverse cholesterol transport with acute exercise. Med Sci Sports Exerc 1993; 25: 1346–51

    PubMed  CAS  Google Scholar 

  58. Lovejoy JC, Champagne CM, Smith SR, et al. Relationship of dietary fat and serum cholesterol ester and phospholipid fatty acids to markers of insulin resistance in men and women with a range of glucose tolerance. Metabolism 2001; 50: 86–92

    Article  PubMed  CAS  Google Scholar 

  59. Von Duvillar SP, Foxall TL, Davis WP, et al. Effects of exercise on plasma high-density lipoprotein cholesteryl ester metabolism in male and female miniature swine. Metabolism 2000; 49: 826–32

    Article  Google Scholar 

  60. Vasankari TJ, Kujala UM, Vasankari TM, et al. Reduced oxidized LDL levels after a 10-month exercise program. Med Sci Sports Exerc 1998; 30: 1496–501

    Article  PubMed  CAS  Google Scholar 

  61. Eristland J. Safety considerations of polyunsaturated fatty acids. Am J Clin Nutr 2000; 71: 197S-201S

    Google Scholar 

  62. Ceriello A, Bortolotti N, Motz E, et al. Meal-induced oxidative stress and low-density lipoprotein oxidation in diabetes: the possible role of hyperglycemia. Metabolism 1999; 48: 1503–8

    Article  PubMed  CAS  Google Scholar 

  63. Giada F, Vigna GB, Vitale E, et al. Effect of age on the response of blood lipids, body composition, and aerobic power to physical conditioning and deconditioning. Metabolism 1995; 44: 161–5

    Article  PubMed  CAS  Google Scholar 

  64. Marcoux C, Tremblay M, Fredenrich A, et al. Plasma remnant-like particle lipid and apolipoprotein levels in normolipidemic and hyperlipidemic subjects. Atherosclerosis 1998; 139: 161–71

    Article  PubMed  CAS  Google Scholar 

  65. Clavey V, Copin C, Mariotte MC, et al. Cell culture conditions determine apolipoprotein CHI secretion and regulation by fibrates in human hepatoma HepG2 cells. Cell Physiol Biochem 1999; 9: 139–49

    Article  PubMed  CAS  Google Scholar 

  66. Xu J, Teran-Garcia M, Park JH, et al. Polyunsaturated fatty acids suppress hepatic sterol regulatory element-binding protein-1 expression by accelerating transcript decay. I Biol Chem 2001; 276: 9800–7

    Article  PubMed  CAS  Google Scholar 

  67. Jump DB, Clarke SD, Thelen A, et al. Coordinate regulation of glycolytic and lipogenic gene expression by polyunsaturated fatty acids. J Lipid Res 1994; 35: 1076–84

    PubMed  CAS  Google Scholar 

  68. Child RB, Wilkinson DM, Fallowfield JL, et al. Elevated serum antioxidant capacity and plasma malondialdehyde concentration in response to a simulated half-marathon run. Med Sci Sports Exerc 1998; 30: 1603–7

    Article  PubMed  CAS  Google Scholar 

  69. Calder PC, Newsholme EA. Polyunsaturated fatty acids suppress human peripheral blood lymphocyte proliferation and interleukin-2 production. Clin Sci 1992; 82: 695–701

    PubMed  CAS  Google Scholar 

  70. Banfi G, Marinelli M, Roi GS, et al. Usefulness of free testosterone/cortisol ratio during a season of elite speed skating athletes. Int J Sports Med 1993; 14: 373–9

    Article  PubMed  CAS  Google Scholar 

  71. Van Hall G, Saltin B, Van-Der-Vusse GJ, et al. Deamination of amino-acids as a source for ammonia production in human skeletal muscle during prolonged exercise. J Physiol 1995; 489: 251–61

    PubMed  Google Scholar 

  72. Budgett R, Newsholme E, Lehmann M, et al. Redefining the overtraining syndrome as the unexplained underperformance syndrome. Br J Sports Med 2000; 34: 67–8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors have provided no information on sources of funding or on conflicts of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Petibois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petibois, C., Cazorla, G., Poortmans, JR. et al. Biochemical Aspects of Overtraining in Endurance Sports. Sports Med 33, 83–94 (2003). https://doi.org/10.2165/00007256-200333020-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200333020-00001

Keywords

Navigation